Statistical Quantitative Methods in Finance : From Theory to Quantitative Portfolio Management

Ahlawat, Samit

ISBN 13: 9798868809613
Edité par Apress, 2025
Ancien(s) ou d'occasion Couverture souple

Vendeur GreatBookPrices, Columbia, MD, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 6 avril 2009

Nous sommes désolés, cet exemplaire spécifique n'est plus disponible. Voici nos correspondances les plus proches pour Statistical Quantitative Methods in Finance : From Theory to Quantitative Portfolio Management de Ahlawat, Samit.

A propos de cet article

Description :

Unread book in perfect condition. N° de réf. du vendeur 49448491

Signaler cet article

Synopsis :

Statistical quantitative methods are vital for financial valuation models and benchmarking machine learning models in finance.

This book explores the theoretical foundations of statistical models, from ordinary least squares (OLS) to the generalized method of moments (GMM) used in econometrics. It enriches your understanding through practical examples drawn from applied finance, demonstrating the real-world applications of these concepts. Additionally, the book delves into non-linear methods and Bayesian approaches, which are becoming increasingly popular among practitioners thanks to advancements in computational resources. By mastering these topics, you will be equipped to build foundational models crucial for applied data science, a skill highly sought after by software engineering and asset management firms. The book also offers valuable insights into quantitative portfolio management, showcasing how traditional data science tools can be enhanced with machine learning models. These enhancements are illustrated through real-world examples from finance and econometrics, accompanied by Python code. This practical approach ensures that you can apply what you learn, gaining proficiency in the statsmodels library and becoming adept at designing, implementing, and calibrating your models.

By understanding and applying these statistical models, you enhance your data science skills and effectively tackle financial challenges.

 

What You Will Learn

  • Understand the fundamentals of linear regression and its applications in financial data analysis and prediction
  • Apply generalized linear models for handling various types of data distributions and enhancing model flexibility
  • Gain insights into regime switching models to capture different market conditions and improve financial forecasting
  • Benchmark machine learning models against traditional statistical methods to ensure robustness and reliability in financial applications

 

Who This Book Is For

Data scientists, machine learning engineers, finance professionals, and software engineers

À propos de l?auteur:

Samit Ahlawat is a portfolio manager at QSpark Investment, specializing in US equity and derivative trading. He has extensive experience in quantitative asset management and market risk management, having previously worked at JP Morgan Chase and Bank of America. His research interests include artificial intelligence, risk management, and algorithmic trading strategies. Samit holds a master's degree in numerical computation from the University of Illinois, Urbana-Champaign.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Statistical Quantitative Methods in Finance ...
Éditeur : Apress
Date d'édition : 2025
Reliure : Couverture souple
Etat : As New

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Samit Ahlawat
Edité par Apress, 2025
ISBN 13 : 9798868809613
Neuf Taschenbuch
impression à la demande

Vendeur : preigu, Osnabrück, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Statistical Quantitative Methods in Finance | From Theory to Quantitative Portfolio Management | Samit Ahlawat | Taschenbuch | xvi | Englisch | 2025 | Apress | EAN 9798868809613 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 130022146

Contacter le vendeur

Acheter neuf

EUR 42,05
EUR 70 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Samit Ahlawat
Edité par Apress, Apress, 2025
ISBN 13 : 9798868809613
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Statistical quantitative methods are vital for financial valuation models and benchmarking machine learning models in finance.This book explores the theoretical foundations of statistical models, from ordinary least squares (OLS) to the generalized method of moments (GMM) used in econometrics. It enriches your understanding through practical examples drawn from applied finance, demonstrating the real-world applications of these concepts. Additionally, the book delves into non-linear methods and Bayesian approaches, which are becoming increasingly popular among practitioners thanks to advancements in computational resources. By mastering these topics, you will be equipped to build foundational models crucial for applied data science, a skill highly sought after by software engineering and asset management firms. The book also offers valuable insights into quantitative portfolio management, showcasing how traditional data science tools can be enhanced with machine learning models. These enhancements are illustrated through real-world examples from finance and econometrics, accompanied by Python code. This practical approach ensures that you can apply what you learn, gaining proficiency in the statsmodels library and becoming adept at designing, implementing, and calibrating your models.By understanding and applying these statistical models, you enhance your data science skills and effectively tackle financial challenges.What You Will LearnUnderstand the fundamentals of linear regression and its applications in financial data analysis and predictionApply generalized linear models for handling various types of data distributions and enhancing model flexibilityGain insights into regime switching models to capture different market conditions and improve financial forecastingBenchmark machine learning models against traditional statistical methods to ensure robustness and reliability in financial applicationsWho This Book Is ForData scientists, machine learning engineers, finance professionals, and software engineers. N° de réf. du vendeur 9798868809613

Contacter le vendeur

Acheter neuf

EUR 48,14
EUR 62,38 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier