Training Systems using Python Statistical Modeling
Curtis Miller
Vendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Neuf(s) - Couverture souple
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierVendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au paniernach der Bestellung gedruckt Neuware - Printed after ordering.
N° de réf. du vendeur 9781838823733
Leverage the power of Python and statistical modeling techniques for building accurate predictive models
Key Features:
- Get started with Python's rich suite of libraries for statistical modeling
- Implement regression and clustering, and train neural networks from scratch
- Discover real-world examples on training end-to-end machine learning systems in Python
Book Description:
Python's ease-of-use and multi-purpose nature has made it one of the most popular tools for data scientists and machine learning developers. Its rich libraries are widely used for data analysis, and more importantly, for building state-of-the-art predictive models. This book is designed to guide you through using these libraries to implement effective statistical models for predictive analytics.
You'll start by delving into classical statistical analysis, where you will learn to compute descriptive statistics using pandas. You will focus on supervised learning, which will help you explore the principles of machine learning and train different machine learning models from scratch. Next, you will work with binary prediction models, such as data classification using k-nearest neighbors, decision trees, and random forests. The book will also cover algorithms for regression analysis, such as ridge and lasso regression, and their implementation in Python. In later chapters, you will learn how neural networks can be trained and deployed for more accurate predictions, and understand which Python libraries can be used to implement them.
By the end of this book, you will have the knowledge you need to design, build, and deploy enterprise-grade statistical models for machine learning using Python and its rich ecosystem of libraries for predictive analytics.
What You Will Learn:
- Understand the importance of statistical modeling
- Learn about the different Python packages for statistical analysis
- Implement algorithms such as Naive Bayes and random forests
- Build predictive models from scratch using Python s scikit-learn library
- Implement regression analysis and clustering
- Learn how to train a neural network in Python
Who this book is for:
If you are a data scientist, a statistician or a machine learning developer looking to train and deploy effective machine learning models using popular statistical techniques, then this book is for you. Knowledge of Python programming is required to get the most out of this book.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Conditions générales et informations client
I. Conditions générales
§ 1 Dispositions de base
(1) Les conditions générales suivantes s?appliquent à tous les contrats que vous concluez avec nous en tant que fournisseur (AHA-BUCH GmbH) via les plateformes Internet AbeBooks et/ou ZVAB. Sauf accord contraire, l?inclusion de l?une de vos propres conditions générales que vous utilisez sera contestée
(2) Un consommateur au sens des règlements suivants est toute personne physique qui conclut une transact...
Pour plus d'informationNous expédions votre commande après les avoir reçues
pour les articles disponibles au plus tard 24 heures,
pour les articles avec un approvisionnement de nuit au plus tard 48 heures.
Dans le cas où nous devons commander un article auprès de notre fournisseur, notre délai d’expédition dépend de la date de réception des articles, mais les articles seront expédiés le jour même.
Notre objectif est d’envoyer les articles commandés de la manière la plus rapide, mais aussi la plus efficace et la plus sécurisée à nos clients.