Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more

Rothman; Denis

ISBN 10: 1800565798 ISBN 13: 9781800565791
Edité par Packt Publishing, 2021
Ancien(s) ou d'occasion Couverture souple

Vendeur Dream Books Co., Denver, CO, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 23 novembre 2023


A propos de cet article

Description :

This copy has clearly been enjoyedâ expect noticeable shelf wear and some minor creases to the cover. Binding is strong, and all pages are legible. May contain previous library markings or stamps. N° de réf. du vendeur DBV.1800565798.A

Signaler cet article

Synopsis :

Become an AI language understanding expert by mastering the quantum leap of Transformer neural network models

Key Features

  • Build and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning models
  • Go through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machine
  • Learn training tips and alternative language understanding methods to illustrate important key concepts

Book Description

The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers.

The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face.

The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification.

By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.

What you will learn

  • Use the latest pretrained transformer models
  • Grasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer models
  • Create language understanding Python programs using concepts that outperform classical deep learning models
  • Use a variety of NLP platforms, including Hugging Face, Trax, and AllenNLP
  • Apply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and more
  • Measure the productivity of key transformers to define their scope, potential, and limits in production

Who this book is for

Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers.

Readers who can benefit the most from this book include deep learning & NLP practitioners, data analysts and data scientists who want an introduction to AI language understanding to process the increasing amounts of language-driven functions.

Table of Contents

  1. Getting Started with the Model Architecture of the Transformer
  2. Fine-Tuning BERT Models
  3. Pretraining a RoBERTa Model from Scratch
  4. Downstream NLP Tasks with Transformers
  5. Machine Translation with the Transformer
  6. Text Generation with OpenAI GPT-2 and GPT-3 Models
  7. Applying Transformers to Legal and Financial Documents for AI Text Summarization
  8. Matching Tokenizers and Datasets
  9. Semantic Role Labeling with BERT-Based Transformers
  10. Let Your Data Do the Talking: Story, Questions, and Answers
  11. Detecting Customer Emotions to Make Predictions
  12. Analyzing Fake News with Transformers
  13. Appendix: Answers to the Questions

À propos de l?auteur:

Denis Rothman graduated from Sorbonne University and Paris-Diderot University, patenting one of the very first word2matrix embedding solutions. Denis Rothman is the author of three cutting-edge AI solutions: one of the first AI cognitive chatbots more than 30 years ago; a profit-orientated AI resource optimizing system; and an AI APS (Advanced Planning and Scheduling) solution based on cognitive patterns used worldwide in aerospace, rail, energy, apparel, and many other fields. Designed initially as a cognitive AI bot for IBM, it then went on to become a robust APS solution used to this day.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Transformers for Natural Language Processing...
Éditeur : Packt Publishing
Date d'édition : 2021
Reliure : Couverture souple
Etat : acceptable

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Denis Rothman
Edité par Packt Publishing, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Ancien ou d'occasion Couverture souple

Vendeur : Buchpark, Trebbin, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Gut. Zustand: Gut | Seiten: 384 | Sprache: Englisch | Produktart: Bücher | Take your NLP knowledge to the next level and become an AI language understanding expert by mastering the quantum leap of Transformer neural network models Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning models Go through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machine Test transformer models on advanced use cases Book Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What You Will LearnUse the latest pretrained transformer models Grasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer models Create language understanding Python programs using concepts that outperform classical deep learning models Use a variety of NLP platforms, including Hugging Face, Trax, and AllenNLP Apply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and more Measure the productivity of key transformers to define their scope, potential, and limits in production Who this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data. N° de réf. du vendeur 37187873/3

Contacter le vendeur

Acheter D'occasion

EUR 43,15
EUR 105 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Rothman, Denis
Edité par Packt Publishing, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf paperback

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : New. New. book. N° de réf. du vendeur ERICA80018005657986

Contacter le vendeur

Acheter neuf

EUR 69,57
EUR 28,62 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Rothman; Denis
Edité par Packt Publishing, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar2912160211538

Contacter le vendeur

Acheter neuf

EUR 83,22
EUR 3,39 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Rothman; Denis
Edité par Packt Publishing, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 42533351-n

Contacter le vendeur

Acheter neuf

EUR 84,39
EUR 2,24 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Rothman Denis
Edité par Packt Publishing, Limited, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand pp. 384. N° de réf. du vendeur 389391672

Contacter le vendeur

Acheter neuf

EUR 92,66
EUR 7,44 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Rothman; Denis
Edité par Packt Publishing, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781800565791

Contacter le vendeur

Acheter neuf

EUR 93,68
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Rothman; Denis
Edité par Packt Publishing, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 42533351-n

Contacter le vendeur

Acheter neuf

EUR 96,72
EUR 17,17 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Denis Rothman
Edité par Packt Publishing Limited, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781800565791

Contacter le vendeur

Acheter neuf

EUR 96,73
EUR 6,72 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Rothman; Denis
Edité par Packt Publishing, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42533351

Contacter le vendeur

Acheter D'occasion

EUR 98,37
EUR 2,24 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Denis Rothman
Edité par Packt Publishing Limited, 2021
ISBN 10 : 1800565798 ISBN 13 : 9781800565791
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781800565791

Contacter le vendeur

Acheter neuf

EUR 101
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 8 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre