Tree-Based Methods for Statistical Learning in R: A Practical Introduction with Applications in R (Chapman & Hall/CRC Data Science Series)

Greenwell, Brandon M.

ISBN 10: 0367532468 ISBN 13: 9780367532468
Edité par Chapman and Hall/CRC, 2022
Neuf(s) Couverture rigide

Vendeur Ria Christie Collections, Uxbridge, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 25 mars 2015


A propos de cet article

Description :

In. N° de réf. du vendeur ria9780367532468_new

Signaler cet article

Synopsis :

This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary.

À propos de l?auteur:

Brandon M. Greenwell is a data scientist at 84.51° where he works on a diverse team to enable, empower, and enculturate statistical and machine learning best practices where it's applicable to help others solve real business problems. He received a B.S. in Statistics and an M.S. in Applied Statistics from Wright State University, and a Ph.D. in Applied Mathematics from the Air Force Institute of Technology. He's currently part of the Adjunct Graduate Faculty at Wright State University, an Adjunct Instructor at the University of Cincinnati, the lead developer and maintainer of several R packages available on CRAN (and off CRAN), and co-author of "Hands-On Machine Learning with R."

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Tree-Based Methods for Statistical Learning ...
Éditeur : Chapman and Hall/CRC
Date d'édition : 2022
Reliure : Couverture rigide
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Greenwell, Brandon M.
Edité par Chapman and Hall/CRC, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Ancien ou d'occasion Couverture rigide

Vendeur : HPB-Red, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_432168556

Contacter le vendeur

Acheter D'occasion

EUR 61,33
EUR 3,19 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Greenwell, Brandon M.
Edité par Chapman and Hall/CRC, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Neuf Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44132302-n

Contacter le vendeur

Acheter neuf

EUR 96,69
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Greenwell, Brandon M.
Edité par Chapman and Hall/CRC, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 44132302-n

Contacter le vendeur

Acheter neuf

EUR 97,93
EUR 17,08 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Brandon M. Greenwell
Edité par Taylor & Francis Ltd, London, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Neuf Couverture rigide
impression à la demande

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology.The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers.Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work.Features: Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book.A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., theres an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree).Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance. This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780367532468

Contacter le vendeur

Acheter neuf

EUR 97,94
EUR 42,14 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Brandon M. Greenwell
Edité par Taylor & Francis Ltd, London, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Neuf Couverture rigide
impression à la demande

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology.The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers.Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work.Features: Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book.A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., theres an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree).Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance. This book provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780367532468

Contacter le vendeur

Acheter neuf

EUR 99,01
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Brandon M. Greenwell (University of Cincinnati, Cincinnati, USA)
Edité par CRC Press, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Neuf Couverture rigide

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. N° de réf. du vendeur 543244878

Contacter le vendeur

Acheter neuf

EUR 102,65
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Greenwell, Brandon M.
Edité par Chapman and Hall/CRC, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44132302

Contacter le vendeur

Acheter D'occasion

EUR 102,83
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Greenwell, Brandon M.
Edité par Chapman and Hall/CRC, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Neuf Couverture rigide

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Feb2215580155349

Contacter le vendeur

Acheter neuf

EUR 111,62
EUR 3,40 shipping
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Greenwell, Brandon M.
Edité par Chapman and Hall/CRC, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 44132302

Contacter le vendeur

Acheter D'occasion

EUR 111,73
EUR 17,08 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Brandon M. Greenwell
Edité par Taylor & Francis Group, 2022
ISBN 10 : 0367532468 ISBN 13 : 9780367532468
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 388. N° de réf. du vendeur 26390131056

Contacter le vendeur

Acheter neuf

EUR 114,69
EUR 3,40 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

There are 8 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre