A Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning

Alborz Geramifard

ISBN 10: 1601987609 ISBN 13: 9781601987600
Edité par now publishers Inc, 2013
Neuf(s) Paperback / softback

Vendeur THE SAINT BOOKSTORE, Southport, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 14 juin 2006


A propos de cet article

Description :

This item is printed on demand. New copy - Usually dispatched within 5-9 working days 142. N° de réf. du vendeur C9781601987600

Signaler cet article

Synopsis :

A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs.

This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance.

This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable.

Présentation de l'éditeur: A Markov Decision Process (MDP) is a natural framework for formulating sequential decision-making problems under uncertainty. In recent years, researchers have greatly advanced algorithms for learning and acting in MDPs. This book reviews such algorithms, beginning with well-known dynamic programming methods for solving MDPs such as policy iteration and value iteration, then describes approximate dynamic programming methods such as trajectory based value iteration, and finally moves to reinforcement learning methods such as Q-Learning, SARSA, and least-squares policy iteration. It describes algorithms in a unified framework, giving pseudocode together with memory and iteration complexity analysis for each. Empirical evaluations of these techniques, with four representations across four domains, provide insight into how these algorithms perform with various feature sets in terms of running time and performance. This tutorial provides practical guidance for researchers seeking to extend DP and RL techniques to larger domains through linear value function approximation. The practical algorithms and empirical successes outlined also form a guide for practitioners trying to weigh computational costs, accuracy requirements, and representational concerns. Decision making in large domains will always be challenging, but with the tools presented here this challenge is not insurmountable.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : A Tutorial on Linear Function Approximators ...
Éditeur : now publishers Inc
Date d'édition : 2013
Reliure : Paperback / softback
Etat : New

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Geramifard, Alborz; Walsh, Thomas J; Stefanie, Tellex; Chowdhary, Girish; Roy, Nicholas; How, Jonathan P
Edité par Now Publishers, 2013
ISBN 10 : 1601987609 ISBN 13 : 9781601987600
Ancien ou d'occasion Couverture souple

Vendeur : Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Very Good. Unused, some outer edges have minor scuffs, cover has light scratches, some outer pages have marks from shelf wear, book content is in like new condition. N° de réf. du vendeur 101703-7

Contacter le vendeur

Acheter D'occasion

EUR 29,72
EUR 74,27 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier