Univariate Discrete Distributions
Norman L. Johnson
Vendu par Kennys Bookstore, Olney, MD, Etats-Unis
Vendeur AbeBooks depuis 9 octobre 2009
Neuf(s) - Couverture rigide
Etat : Neuf
Quantité disponible : Plus de 20 disponibles
Ajouter au panierVendu par Kennys Bookstore, Olney, MD, Etats-Unis
Vendeur AbeBooks depuis 9 octobre 2009
Etat : Neuf
Quantité disponible : Plus de 20 disponibles
Ajouter au panierThis Set Contains:Continuous Multivariate Distributions, Volume 1, Models and Applications, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson; Continuous Univariate Distributions, Volume 1, 2nd Edition by Samuel Kotz, N. Balakrishnan and Normal L. Johnson; Continuous Univariate Distributions, Volume 2, 2nd Edition by Samuel Kotz, N. Series: Wiley Series in Probability and Statistics. Num Pages: 672 pages, Illustrations. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 245 x 164 x 35. Weight in Grams: 1136. . 2005. 3rd Edition. Hardcover. . . . . Books ship from the US and Ireland.
N° de réf. du vendeur V9780471272465
Discover the latest advances in discrete distributions theory
The Third Edition of the critically acclaimed Univariate Discrete Distributions provides a self-contained, systematic treatment of the theory, derivation, and application of probability distributions for count data. Generalized zeta-function and q-series distributions have been added and are covered in detail. New families of distributions, including Lagrangian-type distributions, are integrated into this thoroughly revised and updated text. Additional applications of univariate discrete distributions are explored to demonstrate the flexibility of this powerful method.
A thorough survey of recent statistical literature draws attention to many new distributions and results for the classical distributions. Approximately 450 new references along with several new sections are introduced to reflect the current literature and knowledge of discrete distributions.
Beginning with mathematical, probability, and statistical fundamentals, the authors provide clear coverage of the key topics in the field, including:
Emphasis continues to be placed on the increasing relevance of Bayesian inference to discrete distribution, especially with regard to the binomial and Poisson distributions. New derivations of discrete distributions via stochastic processes and random walks are introduced without unnecessarily complex discussions of stochastic processes. Throughout the Third Edition, extensive information has been added to reflect the new role of computer-based applications.
With its thorough coverage and balanced presentation of theory and application, this is an excellent and essential reference for statisticians and mathematicians.
ADRIENNE W. KEMP, PHD, is Honorary Senior Lecturer at the Mathematical Institute, University of St. Andrews in Scotland.
SAMUEL KOTZ, PHD, is Professor and Research Scholar, Department of Engineering Management and Systems Engineering, The George Washington University in Washington, DC.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
We guarantee the condition of every book as it's described on the Abebooks websites.
If you're dissatisfied with your purchase (Incorrect Book/Not as Described/Damaged) or if the order hasn't arrived, you're eligible for a refund within 30 days of the estimated delivery date.
For any queries please use the contact seller link or send an email to books@kennys.ie
Conor Kenny
All books securely packaged. Some books ship from Ireland.
| Quantité commandée | 14 à 20 jours ouvrés | 13 à 14 jours ouvrés |
|---|---|---|
| Premier article | EUR 9.01 | EUR 18.02 |
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.