Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach (Unsupervised and Semi-Supervised Learning)

Taguchi, Y-h.

ISBN 10: 3031609816 ISBN 13: 9783031609817
Edité par Springer, 2024
Neuf(s) Couverture rigide

Vendeur Ria Christie Collections, Uxbridge, Royaume-Uni Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 25 mars 2015


A propos de cet article

Description :

In. N° de réf. du vendeur ria9783031609817_new

Signaler cet article

Synopsis :

This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.

À propos de l?auteur:

Prof. Taguchi is currently a Professor at Department of Physics, Chuo University. Prof. Taguchi received a master degree in Statistical Physics from Tokyo Institute of Technology, Japan in 1986, and PhD degree in Non-linear Physics from Tokyo Institute of Technology, Tokyo, Japan in 1988. He worked at Tokyo Institute of Technology and Chuo University. He is with Chuo University (Tokyo, Japan) since 1997. He currently holds the Professor position at this university. His main research interests are in the area of Bioinformatics, especially, multi-omics data analysis using linear algebra. Dr. Taguchi has published a book on bioinformatics, more than 150 journal papers, book chapters and papers in conference proceedings and was recognized as top 2% scientist of the world in 3rd consecutive years (2021, 2022, 2023) according to analysis of Stanford University, USA and report of Elsevier in bioinformatics.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Unsupervised Feature Extraction Applied to ...
Éditeur : Springer
Date d'édition : 2024
Reliure : Couverture rigide
Etat : New
Edition : 2ème Édition

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

0
Edité par Springer, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide

Vendeur : Basi6 International, Irving, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-15574

Contacter le vendeur

Acheter neuf

EUR 158,63
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Taguchi, Y-h.
Edité par Springer, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide

Vendeur : ALLBOOKS1, Direk, SA, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. N° de réf. du vendeur SHAK15574

Contacter le vendeur

Acheter neuf

EUR 177,09
Livraison gratuite
Expédition depuis Australie vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Taguchi, Y-h.
Edité par Springer, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Second Edition 2024 NO-PA16APR2015-KAP. N° de réf. du vendeur 26402091650

Contacter le vendeur

Acheter neuf

EUR 177,51
EUR 3,41 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Taguchi, Y-h.
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own . N° de réf. du vendeur 1592583110

Contacter le vendeur

Acheter neuf

EUR 180,07
EUR 48,99 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Taguchi, Y-h.
Edité par Springer, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 394318173

Contacter le vendeur

Acheter neuf

EUR 186,65
EUR 7,42 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Taguchi, Y-h.
Edité par Springer, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 18402091656

Contacter le vendeur

Acheter neuf

EUR 192,09
EUR 9,95 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Taguchi, Y-h.
Edité par Springer Nature, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide
impression à la demande

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Brand New. 2nd edition. 555 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __3031609816

Contacter le vendeur

Acheter neuf

EUR 211,70
EUR 14,27 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Y-h. Taguchi
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 556 pp. Englisch. N° de réf. du vendeur 9783031609817

Contacter le vendeur

Acheter neuf

EUR 213,99
EUR 60 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Y-h. Taguchi
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 527 pp. Englisch. N° de réf. du vendeur 9783031609817

Contacter le vendeur

Acheter neuf

EUR 213,99
EUR 23 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Y-h. Taguchi
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Neuf Couverture rigide

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783031609817

Contacter le vendeur

Acheter neuf

EUR 215,61
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 4 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre