Bayesian Nonparametrics for Causal Inference and Missing Data

Michael J. Daniels

ISBN 10: 036734100X ISBN 13: 9780367341008
Edité par Taylor & Francis Ltd, 2023
Neuf(s) Couverture rigide

Vendeur Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 27 février 2001


A propos de cet article

Description :

2023. 1st Edition. Hardcover. . . . . . N° de réf. du vendeur V9780367341008

Signaler cet article

Synopsis :

Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.

The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.

Features

- Thorough discussion of both BNP and its interplay with causal inference and missing data

- How to use BNP and g-computation for causal inference and non-ignorable missingness

- How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions

- Detailed case studies illustrating the application of BNP methods to causal inference and missing data

- R code and/or packages to implement BNP in causal inference and missing data problems

The book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers.

À propos de l?auteur:

Dr. Daniels received his undergraduate degree from Brown University in Applied Mathematics and doctoral degree from Harvard University in Biostatistics. He has been on the faculty at Iowa State and University of Texas at Austin.

Currently, Dr. Daniels is Professor, Andrew Banks Family Endowed Chair, and Chair in the Department of Statistics at the University of Florida. He is a past president of ENAR. He is a fellow of the American Statistical Association, past chair of the Statistics in Epidemiology Section of the American Statistical Association (ASA), former chair of the Biometrics Section of the ASA, and former editor of Biometrics.

He has received the Lagakos Distinguished Alumni Award from Harvard Biostatistics and the L. Adrienne Cupples Award from Boston University.

He has published extensively on Bayesian methods for missing data, longitudinal data and causal inference and has been funded by NIH R01 grants as PI and/or MPI since 2001. He also has a strong and productive record of collaborative research, with a focus on behavioral trials in smoking cessation and weight management, muscular dystrophy, and HIV.

Dr. Linero received his PhD in Statistics from the University of Florida. He is currently Assistant Professor in the Department of Statistics and Data Sciences at the University of Texas at Austin. His research is broadly focused on developing flexible Bayesian methods for complex longitudinal data, as well as developing tools for model selection, variable selection, and causal inference within the Bayesian nonparametric framework for high-dimensional problems.

Dr. Roy received his PhD in Biostatistics from the University of Michigan. He is currently Professor of Biostatistics and Chair of the Department of Biostatistics and Epidemiology at Rutgers School of Public Health. He directs the biostatistics core of the New Jersey Alliance for Clinical and Translational Science. He is a fellow of the American Statistical Association (ASA) and recipient of the Causality in Statistics Education Award from the ASA. His methodological research has focused on flexible Bayesian methods for causal inference. As a collaborative statistician, he has worked on studies in many areas of medicine and public health, including chronic kidney disease, hepatotoxicity of medications, and SARS-CoV-2.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Bayesian Nonparametrics for Causal Inference...
Éditeur : Taylor & Francis Ltd
Date d'édition : 2023
Reliure : Couverture rigide
Etat : New
Edition : Edition originale

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Michael J. Daniels (University of Florida, Gainesville, USA)|Antonio Linero|Jason Roy
Edité par CRC Press, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Daniels received his undergraduate degree from Brown University in Applied Mathematics and doctoral degree from Harvard University in Biostatistics. He has been on the faculty at Iowa State and University of Texas at Austin. C. N° de réf. du vendeur 849602821

Contacter le vendeur

Acheter neuf

EUR 111,38
Expédition à EUR 48,99
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Daniels, Michael J.; Linero, Antonio; Roy, Jason
Edité par Chapman and Hall/CRC, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 45815329

Contacter le vendeur

Acheter D'occasion

EUR 117,81
Expédition à EUR 2,27
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Michael J Daniels
Edité par CRC Press Aug 2023, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.Features- Thorough discussion of both BNP and its interplay with causal inference and missing data- How to use BNP and g-computation for causal inference and non-ignorable missingness- How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions- Detailed case studies illustrating the application of BNP methods to causal inference and missing data- R code and/or packages to implement BNP in causal inference and missing data problemsThe book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers. 248 pp. Englisch. N° de réf. du vendeur 9780367341008

Contacter le vendeur

Acheter neuf

EUR 121,60
Expédition à EUR 23
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Daniels, Michael J.; Linero, Antonio; Roy, Jason
Edité par Chapman and Hall/CRC, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Ancien ou d'occasion Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 45815329

Contacter le vendeur

Acheter D'occasion

EUR 130,63
Expédition à EUR 17,29
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Daniels, Michael J.; Linero, Antonio; Roy, Jason
Edité par Chapman and Hall/CRC, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 45815329-n

Contacter le vendeur

Acheter neuf

EUR 130,75
Expédition à EUR 17,29
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Michael J. Daniels
Edité par Taylor & Francis Ltd, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9780367341008

Contacter le vendeur

Acheter neuf

EUR 130,76
Expédition à EUR 18,16
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Daniels, Michael J.; Linero, Antonio; Roy, Jason
Edité par Chapman and Hall/CRC, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 399907231

Contacter le vendeur

Acheter neuf

EUR 135,29
Expédition à EUR 7,49
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Michael J. Daniels
Edité par Chapman And Hall/CRC, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Bayesian Nonparametrics for Causal Inference and Missing Data provides an overview of flexible Bayesian nonparametric (BNP) methods for modeling joint or conditional distributions and functional relationships, and their interplay with causal inference and missing data. This book emphasizes the importance of making untestable assumptions to identify estimands of interest, such as missing at random assumption for missing data and unconfoundedness for causal inference in observational studies. Unlike parametric methods, the BNP approach can account for possible violations of assumptions and minimize concerns about model misspecification. The overall strategy is to first specify BNP models for observed data and then to specify additional uncheckable assumptions to identify estimands of interest.The book is divided into three parts. Part I develops the key concepts in causal inference and missing data and reviews relevant concepts in Bayesian inference. Part II introduces the fundamental BNP tools required to address causal inference and missing data problems. Part III shows how the BNP approach can be applied in a variety of case studies. The datasets in the case studies come from electronic health records data, survey data, cohort studies, and randomized clinical trials.Features- Thorough discussion of both BNP and its interplay with causal inference and missing data- How to use BNP and g-computation for causal inference and non-ignorable missingness- How to derive and calibrate sensitivity parameters to assess sensitivity to deviations from uncheckable causal and/or missingness assumptions- Detailed case studies illustrating the application of BNP methods to causal inference and missing data- R code and/or packages to implement BNP in causal inference and missing data problemsThe book is primarily aimed at researchers and graduate students from statistics and biostatistics. It will also serve as a useful practical reference for mathematically sophisticated epidemiologists and medical researchers. N° de réf. du vendeur 9780367341008

Contacter le vendeur

Acheter neuf

EUR 135,63
Expédition à EUR 62,82
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Daniels, Michael J.; Linero, Antonio; Roy, Jason
Edité par Chapman and Hall/CRC, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9780367341008_new

Contacter le vendeur

Acheter neuf

EUR 136,40
Expédition à EUR 13,81
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Daniels, Michael J.; Linero, Antonio; Roy, Jason
Edité par Chapman and Hall/CRC, 2023
ISBN 10 : 036734100X ISBN 13 : 9780367341008
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26396469824

Contacter le vendeur

Acheter neuf

EUR 140,62
Expédition à EUR 3,44
Expédition nationale : Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

There are 6 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre