Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

Brunton, Steven L.; J. Nathan Kutz

ISBN 10: 1108422098 ISBN 13: 9781108422093
Edité par Cambridge University Press, 2019
Ancien(s) ou d'occasion Hardcover

Vendeur 3rd St. Books, Lees Summit, MO, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 9 octobre 2004


A propos de cet article

Description :

Very good, clean, tight condition. Text free of marks. No marks to cover except for small paint flake off an edge of the spine. Professional book dealer since 1999. All orders are processed promptly and carefully packaged. N° de réf. du vendeur 086045

Signaler cet article

Synopsis :

Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art.

À propos des auteurs: Steven L. Brunton is Associate Professor of Mechanical Engineering at the University of Washington. He is also Adjunct Associate Professor of Applied Mathematics and a Data-Science Fellow at the eScience Institute. His research applies data science and machine learning for dynamical systems and control to fluid dynamics, biolocomotion, optics, energy systems, and manufacturing. He has co-authored two textbooks, received the Army and Air Force Young Investigator awards, and was awarded the University of Washington College of Education teaching award.

J. Nathan Kutz is the Robert Bolles and Yasuko Endo Professor of Applied Mathematics at the University of Washington, and served as department chair until 2015. He is also Adjunct Professor of Electrical Engineering and Physics and a Senior Data-Science Fellow at the eScience Institute. His research interests are in complex systems and data analysis where machine learning can be integrated with dynamical systems and control for a diverse set of applications. He is an author of two textbooks and has received the Applied Mathematics Boeing Award of Excellence in Teaching and an NSF CAREER award.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Data-Driven Science and Engineering: Machine...
Éditeur : Cambridge University Press
Date d'édition : 2019
Reliure : Hardcover
Etat : Very Good
Edition : 1st Edition

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Steven L. Brunton, J. Nathan Kutz
ISBN 10 : 1108422098 ISBN 13 : 9781108422093
Neuf Couverture rigide Edition originale

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. 1st. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art. N° de réf. du vendeur LU-9781108422093

Contacter le vendeur

Acheter neuf

EUR 85,75
EUR 74,23 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Steven L. Brunton, J. Nathan Kutz
ISBN 10 : 1108422098 ISBN 13 : 9781108422093
Neuf Couverture rigide Edition originale

Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardback. Etat : New. 1st. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art. N° de réf. du vendeur LU-9781108422093

Contacter le vendeur

Acheter neuf

EUR 90,98
Livraison gratuite
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier