Handbook of Monte Carlo Methods (Hardcover)
Dirk P. Kroese
Vendu par CitiRetail, Stevenage, Royaume-Uni
Vendeur AbeBooks depuis 29 juin 2022
Neuf(s) - Couverture rigide
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierVendu par CitiRetail, Stevenage, Royaume-Uni
Vendeur AbeBooks depuis 29 juin 2022
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of todays numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generationMarkov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-runDiscrete-event simulationTechniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimationVariance reduction, including importance sampling, latin hypercube sampling, and conditional Monte CarloEstimation of derivatives and sensitivity analysisAdvanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB, a related Web site houses the MATLAB code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels. A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today s numerical problems found in engineering and finance are solved through Monte Carlo methods. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
N° de réf. du vendeur 9780470177938
More and more of today's numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field.
The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including:
The presented theoretical concepts are illustrated with worked examples that use MATLAB(R), a related Web site houses the MATLAB(R) code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation.
Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
Thomas Taimre, PhD, is a Postdoctoral Research Fellow at The University of Queensland. He currently focuses his research on Monte Carlo methods and simulation, from the theoretical foundations to performing computer implementations.
Zdravko I. Botev, PhD, is a Postdoctoral Research Fellow at the University of Montreal (Canada). His research interests include the splitting method for rare-event simulation and kernel density estimation. He is the author of one of the most widely used free MATLAB(R) statistical software programs for nonparametric kernel density estimation.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Orders can be returned within 30 days of receipt.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.
| Quantité commandée | 7 à 60 jours ouvrés | 7 à 14 jours ouvrés |
|---|---|---|
| Premier article | EUR 42.36 | EUR 42.36 |
Les délais de livraison sont fixés par les vendeurs et varient en fonction du transporteur et du lieu. Les commandes transitant par les douanes peuvent être retardées et les acheteurs sont responsables de tous les droits ou frais associés. Les vendeurs peuvent vous contacter au sujet de frais supplémentaires afin de couvrir toute augmentation des coûts d'expédition de vos articles.