Introduction to Queuing Theory
Gnedenko
Vendu par buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Vendeur AbeBooks depuis 23 janvier 2017
Neuf(s) - Couverture souple
Etat : Neuf
Quantité disponible : 2 disponible(s)
Ajouter au panierVendu par buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Vendeur AbeBooks depuis 23 janvier 2017
Etat : Neuf
Quantité disponible : 2 disponible(s)
Ajouter au panierNeuware -to the Second Edition.- to the First Edition.- 1. Problems of Queueing Theory under the Simplest Assumptions.- 1.1. Simple Streams.- 1.1.1. Historical Remarks.- 1.1.2. The Notion of a Stream of Homogeneous Events.- 1.1.3. Qualitative Assumptions and Their Analysis.- 1.1.4. Derivation of Equations for Simple Streams.- 1.1.5. Solution of the Equations.- 1.1.6. Derivation of the Additional Assumption from the Other Three Assumptions.- 1.1.7. Distribution of Times of Events of a Stream.- 1.1.8. The Intensity and Parameter of a Stream.- 1.2. Service with Waiting.- 1.2.1. Statement of the Problem.- 1.2.2. The Servicing Process as a Markov Process.- 1.2.3. Construction of Equations.- 1.2.4. Determination of the Stationary Solution.- 1.2.5. Some Preliminary Results.- 1.2.6. The Distribution Function of the Waiting Time.- 1.2.7. The Mean Waiting Time.- 1.2.8. Example.- 1.3. Birth and Death Processes.- 1.3.1. Definition.- 1.3.2. Differential Equations for the Process.- 1.3.3. Proof of Feller¿s Theorem.- 1.3.4. Passive Redundancy without Renewal.- 1.3.5. Active Redundancy without Renewal.- 1.3.6. Existence of Solutions for Birth and Death Equations.- 1.3.7. Backward Equations.- 1.4. Applications of Birth and Death Processes in Queueing Theory.- 1.4.1. Systems with Losses.- 1.4.2. Systems with Limited Waiting Facilities.- 1.4.3. Distribution of the Waiting Time until the Commencement of Service.- 1.4.4. Team Servicing of Machines.- 1.4.5. A Numerical Example.- 1.4.6. Duplicated Systems with Renewal (Passive Redundancy).- 1.4.7. Duplicated Systems with Renewal (Active Redundancy).- 1.4.8. Duplicated Systems with Renewal (Partially Active Redundancy).- 1.5. Priority Service.- 1.5.1. Statement of the Problem.- 1.5.2. Problems with Losses.- 1.5.3. Equations for pij(t).- 1.5.4. A Particular Case.- 1.5.5. The Possibility of Failure of the Servers.- 1.6. General Principles of Constructing Markov Models of Systems.- 1.6.1. Homogeneous Markov Processes.- 1.6.2. Characteristics of Functionals.- 1.6.3. A General Scheme for Constructing Markov Models of Service Systems.- 1.6.4. The HyperErlang Approximation.- 1.7. Systems with Limited Waiting Time.- 1.7.1. Statement of the Problem.- 1.7.2. The Stochastic Process Describing the State of a System for = const.- 1.7.3. System of Integro-differential Equations for the Problem.- 1.7.4. Various Characteristics of Service.- 1.7.5. Distribution of the Queue Length.- 1.7.6. Waiting Time Bounded by a Random Variable.- 1.8. Systems with Bounded Holding Times.- 1.8.1. Statement of the Problem and Assumptions.- 1.8.2. A Stochastic Process Describing the Service.- 1.8.3. Stationary Distributions.- 1.8.4. Holding Time in a System Bounded by a Random Variable.- 2. The Study of the Incoming Customer Stream.- 2.1. Some Examples.- 2.1.1. The Notion of the Incoming Stream.- 2.1.2. Feed of Components from a Hopper.- 2.1.3. A Regular Stream of Customers.- 2.1.4. Streams of Customers Served by Successively Positioned Servers.- 2.1.5. A Wider Approach to the Notion of the Incoming Stream.- 2.1.6. Marked Streams.- 2.2. A Simple Nonstationary Stream.- 2.2.1. Definition of a Simple Nonstationary Stream.- 2.2.2. Equations for the Probabilities pk(t0, t).- 2.2.3. Solution of the System (7).- 2.2.4. Instantaneous Intensity of a Stream.- 2.2.5. Examples.- 2.2.6. The General Form of Poisson Streams without Aftereffects.- 2.2.7. A System with Infinitely Many Servers.- 2.3. A Property of Stationary Streams.- 2.3.1. Existence of the Parameter.- 2.3.2. A Lemma.- 2.3.3. Proof of Khinchin¿s Theorem.- 2.3.4. An Example of a Stationary Stream with Aftereffects.- 2.4. General Form of Stationary Streams without Aftereffects.- 2.4.1. Statement of the Problem.- 2.4.2. The Existence of the Limits $$mathop {lim }limits_{t o 0} frac{{{pi _k}(t)}}{t}$$.- 2.4.3. Equations for the General Stationary Stream without Aftereffects.- 2.4.4. Solution of Systems (3) and (4).- 2.4.5. A Special Case.- 2.4.6. The Generating Function of the Stream.- 2.
N° de réf. du vendeur 9780817634230
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden können.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen 14 Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerrufsfr...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.