MLOps Engineering at Scale: Deploying Pytorch Models on Aws

Carl Osipov

ISBN 10: 1617297763 ISBN 13: 9781617297762
Edité par Manning Publications, 2022
Neuf(s) Couverture souple

Vendeur Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 27 février 2001


A propos de cet article

Description :

2022. 1st Edition. Paperback. . . . . . N° de réf. du vendeur V9781617297762

Signaler cet article

Synopsis :

Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system’s infrastructure. Following a real-world use case for calculating taxi fares, you’ll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware.

about the technology

Your new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you’re free to focus on tuning and improving your models.

about the book

Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You’ll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you’ll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you’ll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you’re done, you’ll have the tools to easily bridge the gap between ML models and a fully functioning production system.
 

what's inside

  • Extracting, transforming, and loading datasets
  • Querying datasets with SQL
  • Understanding automatic differentiation in PyTorch
  • Deploying trained models and pipelines as a service endpoint
  • Monitoring and managing your pipeline’s life cycle
  • Measuring performance improvements

about the reader

For data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required.

about the author

Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world’s foremost experts in machine learning and also helped manage the company’s efforts to democratize artificial intelligence. You can learn more about Carl from his blog   Clouds With Carl.

À propos de l?auteur: Carl Osipov has been working in the information technology industry since 2001, with a focus on projects in big data analytics and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless cloud computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world's foremost experts in machine learning and helped manage the company's efforts to democratize artificial intelligence with Google Cloud and TensorFlow. Carl is an author of over 20 articles in professional, trade, and academic journals; an inventor with six patents at USPTO; and the holder of three corporate technology awards from IBM.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : MLOps Engineering at Scale: Deploying ...
Éditeur : Manning Publications
Date d'édition : 2022
Reliure : Couverture souple
Etat : New
Edition : Edition originale

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

Edité par Simon and Schuster
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Ancien ou d'occasion

Vendeur : INDOO, Avenel, NJ, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread copy in mint condition. N° de réf. du vendeur SS9781617297762

Contacter le vendeur

Acheter D'occasion

EUR 39,70
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par Simon and Schuster
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf

Vendeur : INDOO, Avenel, NJ, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Brand New. N° de réf. du vendeur 9781617297762

Contacter le vendeur

Acheter neuf

EUR 39,79
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 42620453-n

Contacter le vendeur

Acheter neuf

EUR 47,76
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 18 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Carl Osipov
Edité par Manning Publications, US, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Paperback

Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. N° de réf. du vendeur LU-9781617297762

Contacter le vendeur

Acheter neuf

EUR 50,09
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 390862248

Contacter le vendeur

Acheter neuf

EUR 53,74
EUR 7,42 shipping
Expédition depuis Royaume-Uni vers Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 18389786237

Contacter le vendeur

Acheter neuf

EUR 54,42
EUR 9,95 shipping
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26389786231

Contacter le vendeur

Acheter neuf

EUR 54,75
EUR 3,41 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42620453

Contacter le vendeur

Acheter D'occasion

EUR 55,65
EUR 2,25 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 18 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Paperback

Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned1617297763

Contacter le vendeur

Acheter neuf

EUR 56,68
EUR 3,67 shipping
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Carl Osipov
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Paperback

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers. Cloud Native Machine Learning helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML systems infrastructure. Following a real-world use case for calculating taxi fares, youll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, youre free to focus on tuning and improving your models. about the book Cloud Native Machine Learning is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. Youll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, youll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, youll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When youre done, youll have the tools to easily bridge the gap between ML models and a fully functioning production system. what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipelines life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the worlds foremost experts in machine learning and also helped manage the companys efforts to democratize artificial intelligence. You can learn more about Carl from his blog Clouds With Carl. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781617297762

Contacter le vendeur

Acheter neuf

EUR 57,15
Livraison gratuite
Expédition nationale : Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 10 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre