Simulating Continuous Fuzzy Systems

Buckley, James J.; Jowers, Leonard J. (University of Alabama)

ISBN 10: 3642066682 ISBN 13: 9783642066689
Edité par Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2010
Neuf(s) Couverture souple

Vendeur Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 27 février 2001


A propos de cet article

Description :

Series: Studies in Fuzziness and Soft Computing. Num Pages: 202 pages, 22 black & white tables, biography. BIC Classification: GPFC; UGK. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 11. Weight in Grams: 338. . 2010. 1st ed. Softcover of orig. ed. 2006. Paperback. . . . . N° de réf. du vendeur V9783642066689

Signaler cet article

Synopsis :

1. 1 Introduction This book is written in two major parts. The ?rst part includes the int- ductory chapters consisting of Chapters 1 through 6. In part two, Chapters 7-26, we present the applications. This book continues our research into simulating fuzzy systems. We started with investigating simulating discrete event fuzzy systems ([7],[13],[14]). These systems can usually be described as queuing networks. Items (transactions) arrive at various points in the s- tem and go into a queue waiting for service. The service stations, preceded by a queue, are connected forming a network of queues and service, until the transaction ?nally exits the system. Examples considered included - chine shops, emergency rooms, project networks, bus routes, etc. Analysis of all of these systems depends on parameters like arrival rates and service rates. These parameters are usually estimated from historical data. These estimators are generally point estimators. The point estimators are put into the model to compute system descriptors like mean time an item spends in the system, or the expected number of transactions leaving the system per unit time. We argued that these point estimators contain uncertainty not shown in the calculations. Our estimators of these parameters become fuzzy numbers, constructed by placing a set of con?dence intervals one on top of another. Using fuzzy number parameters in the model makes it into a fuzzy system. The system descriptors we want (time in system, number leaving per unit time) will be fuzzy numbers.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Simulating Continuous Fuzzy Systems
Éditeur : Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Date d'édition : 2010
Reliure : Couverture souple
Etat : New
Edition : Edition originale

Meilleurs résultats de recherche sur AbeBooks

Image d'archives

James J. Buckley
ISBN 10 : 3642066682 ISBN 13 : 9783642066689
Neuf Paperback Edition originale

Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book is the companion text to Simulating Fuzzy Systems which investigated discrete fuzzy systems through crisp discrete simulation. The current book studies continuous fuzzy dynamical systems using crisp continuous simulation. We start with a crisp continuous dynamical system whose evolution depends on a system of ordinary differential equations (ODEs). The system of ODEs contains parameters many of which have uncertain values. Usually point estimators for these uncertain parameters are used, but the resulting system will not display any uncertainty associated with these estimators. Instead we employ fuzzy number estimators, constructed from expert opinion or from data, for the uncertain parameters. Fuzzy number estimators produces a system of fuzzy ODEs to solve whose solution will be fuzzy trajectories for the variables. We use crisp continuous simulation to estimate the trajectories of the support and core of these fuzzy numbers in a variety of twenty applications of fuzzy dynamical systems. The applications range from Bungee jumping to the AIDS epidemic to dynamical models in economics. The point estimators are put into the model to compute system descriptors like mean time an item spends in the system, or the expected number of transactions leaving the system per unit time. The system descriptors we want (time in system, number leaving per unit time) will be fuzzy numbers. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783642066689

Contacter le vendeur

Acheter neuf

EUR 181,21
Autre devise
Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

James J. Buckley
ISBN 10 : 3642066682 ISBN 13 : 9783642066689
Neuf Paperback Edition originale

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. This book is the companion text to Simulating Fuzzy Systems which investigated discrete fuzzy systems through crisp discrete simulation. The current book studies continuous fuzzy dynamical systems using crisp continuous simulation. We start with a crisp continuous dynamical system whose evolution depends on a system of ordinary differential equations (ODEs). The system of ODEs contains parameters many of which have uncertain values. Usually point estimators for these uncertain parameters are used, but the resulting system will not display any uncertainty associated with these estimators. Instead we employ fuzzy number estimators, constructed from expert opinion or from data, for the uncertain parameters. Fuzzy number estimators produces a system of fuzzy ODEs to solve whose solution will be fuzzy trajectories for the variables. We use crisp continuous simulation to estimate the trajectories of the support and core of these fuzzy numbers in a variety of twenty applications of fuzzy dynamical systems. The applications range from Bungee jumping to the AIDS epidemic to dynamical models in economics. The point estimators are put into the model to compute system descriptors like mean time an item spends in the system, or the expected number of transactions leaving the system per unit time. The system descriptors we want (time in system, number leaving per unit time) will be fuzzy numbers. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9783642066689

Contacter le vendeur

Acheter neuf

EUR 281,83
Autre devise
Frais de port : EUR 31,99
De Australie vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier