This text combines applied and theoretical approaches to the analysis of epidemiologic issues. It goes beyond elementary material to deal with real problems generated by disease data, and delves into less usual areas such as the analysis of spatial distributions, survival data, proportional hazards regression, and "computer intensive" approaches to statistical estimation. Each method discussed in the text is illustrated with examples which include complete sets of data. Using actual data demonstrates the strengths and weaknesses of different analytic approaches in describing a disease process. The book's goal is to develop a clear understanding of analytic approaches to problems in epidemiological data analysis without relying on sophisticated mathematics and advanced statistical theory. Individuals with some background in epidemiology and statistics will find this a useful volume in the study of epidemiological analysis.
Analytic procedures suitable for the study of human disease are scattered throughout the statistical and epidemiologic literature. Explanations of their properties are frequently presented in mathematical and theoretical language. This well-established text gives readers a clear understanding of the statistical methods that are widely used in epidemiologic research without depending on advanced mathematical or statistical theory. By applying these methods to actual data, Selvin reveals the strengths and weaknesses of each analytic approach. He combines techniques from the fields of statistics, biostatistics, demography and epidemiology to present a comprehensive overview that does not require computational details of the statistical techniques described. For the Third Edition, Selvin took out some old material (e.g. the section on rarely used cross-over designs) and added new material (e.g. sections on frequently used contingency table analysis). Throughout the text he enriched existing discussions with new elements, including the analysis of multi-level categorical data and simple, intuitive arguments that exponential survival times cause the hazard function to be constant. He added a dozen new applied examples to illustrate such topics as the pitfalls of proportional mortality data, the analysis of matched pair categorical data, and the age-adjustment of mortality rates based on statistical models. The most important new feature is a chapter on Poisson regression analysis. This essential statistical tool permits the multivariable analysis of rates, probabilities and counts.