Synopsis
In this text, the author presents mathematical background and major wavelet applications, ranging from the digital telephone to galactic structure and creation of the universe. It discusses in detail the historic origins, the algorithms and the applications of wavelets.
Présentation de l'éditeur
This long-awaited update of Meyer's Wavelets: Algorithms and Applications includes completely new chapters on four topics: wavelets and the study of turbulence, wavelets and fractals (which includes an analysis of Riemann's nondifferentiable function), data compression, and wavelets in astronomy. The chapter on data compression was the original motivation for this revised edition, and it contains up-to-date information on the interplay between wavelets and nonlinear approximation. The other chapters have been rewritten with comments, references, historical notes, and new material. Four appendices have been added: a primer on filters, key results (with proofs) about the wavelet transform, a complete discussion of a counterexample to the Marr-Mallat conjecture on zero-crossings, and a brief introduction to Hölder and Besov spaces. In addition, all of the figures have been redrawn, and the references have been expanded to a comprehensive list of over 260 entries. The book includes several new results that have not appeared elsewhere.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.