Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 55,27
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 153,70
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHRD. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 152,27
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 164,45
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 164,90
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 169,99
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Springer-Nature New York Inc, 2023
ISBN 10 : 9811947546 ISBN 13 : 9789811947544
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 179,05
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 404 pages. 9.25x6.10x1.02 inches. In Stock.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 191,53
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Springer Nature Singapore, Springer Nature Singapore, 2024
ISBN 10 : 9811947570 ISBN 13 : 9789811947575
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 164,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.
Edité par Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10 : 9811947546 ISBN 13 : 9789811947544
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 164,44
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.
Edité par Springer Nature Singapore, 2023
ISBN 10 : 9811947546 ISBN 13 : 9789811947544
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 154,59
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. Provides a highly practical introduction to Bayesian statistical modeling with Stan, illustrating key conceptsCovers topics essential for mastering modeling, including hierarchical modelsPresents full explanations of code and formulas, enab.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 213,30
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHRD. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 61,15
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 56,21
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Edité par Springer Nature Singapore, Springer Nature Singapore Jan 2024, 2024
ISBN 10 : 9811947570 ISBN 13 : 9789811947575
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub. 408 pp. Englisch.
Edité par Springer Nature Singapore, Springer Nature Singapore Jan 2023, 2023
ISBN 10 : 9811947546 ISBN 13 : 9789811947544
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines.Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub. 408 pp. Englisch.
Edité par Springer, Berlin|Springer Nature Singapore|Springer, 2024
ISBN 10 : 9811947570 ISBN 13 : 9789811947575
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language.The book is divided into four parts. The first part reviews the theoretical backgro.