Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 54,21
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Springer Nature Switzerland, 2023
ISBN 10 : 3031306082 ISBN 13 : 9783031306082
Langue: anglais
Vendeur : Buchpark, Trebbin, Allemagne
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Hervorragend. Zustand: Hervorragend | Seiten: 128 | Sprache: Englisch | Produktart: Bücher.
Edité par Springer Nature Switzerland, Springer Nature Switzerland, 2023
ISBN 10 : 3031306082 ISBN 13 : 9783031306082
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently.
Edité par Springer Nature Switzerland, Springer Nature Switzerland, 2024
ISBN 10 : 3031306112 ISBN 13 : 9783031306112
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently.
Edité par Springer Nature Switzerland, Springer Nature Switzerland Mai 2024, 2024
ISBN 10 : 3031306112 ISBN 13 : 9783031306112
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 128 pp. Englisch.
Edité par Springer Nature Switzerland, Springer Nature Switzerland Mai 2023, 2023
ISBN 10 : 3031306082 ISBN 13 : 9783031306082
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 128 pp. Englisch.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 214,29
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 232,44
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 233,79
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 275,94
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 125 pages. 9.25x6.10x0.51 inches. In Stock.
Edité par Springer International Publishing AG, Cham, 2023
ISBN 10 : 3031306082 ISBN 13 : 9783031306082
Langue: anglais
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
EUR 225,43
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Edité par Springer, Berlin|Springer Nature Switzerland|Springer, 2024
ISBN 10 : 3031306112 ISBN 13 : 9783031306112
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 153,73
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (S.
Edité par Springer, Berlin|Springer Nature Switzerland|Springer, 2023
ISBN 10 : 3031306082 ISBN 13 : 9783031306082
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 153,73
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (S.
Edité par Springer Nature Switzerland, Springer International Publishing Mai 2024, 2024
ISBN 10 : 3031306112 ISBN 13 : 9783031306112
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. 128 pp. Englisch.
Edité par Springer Nature Switzerland, Springer International Publishing Mai 2023, 2023
ISBN 10 : 3031306082 ISBN 13 : 9783031306082
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. 128 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 240,09
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 241,47
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 246,39
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 247,83
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.