Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 173,59
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 182,83
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 228,16
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 239,09
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
EUR 259
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware - In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers.
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 244,03
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
EUR 267,73
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 314,72
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
EUR 343
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware - In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers.