Search preferences
Passer aux résultats principaux de la recherche

Filtres de recherche

Type d'article

  • Tous les types de produits 
  • Livres (9)
  • Magazines & Périodiques (Aucun autre résultat ne correspond à ces critères)
  • Bandes dessinées (Aucun autre résultat ne correspond à ces critères)
  • Partitions de musique (Aucun autre résultat ne correspond à ces critères)
  • Art, Affiches et Gravures (Aucun autre résultat ne correspond à ces critères)
  • Photographies (Aucun autre résultat ne correspond à ces critères)
  • Cartes (Aucun autre résultat ne correspond à ces critères)
  • Manuscrits & Papiers anciens (Aucun autre résultat ne correspond à ces critères)

Etat

  • Tous 
  • Neuf (9)
  • Ancien ou d'occasion (Aucun autre résultat ne correspond à ces critères)

Particularités

  • Ed. originale (Aucun autre résultat ne correspond à ces critères)
  • Signé (Aucun autre résultat ne correspond à ces critères)
  • Jaquette (Aucun autre résultat ne correspond à ces critères)
  • Avec images (2)
  • Sans impressions à la demande (9)

Langue (1)

Prix

  • Tous les prix 
  • Moins de EUR 20 (Aucun autre résultat ne correspond à ces critères)
  • EUR 20 à EUR 45 (Aucun autre résultat ne correspond à ces critères)
  • Plus de EUR 45 
Fourchette de prix personnalisée (EUR)

Livraison gratuite

  • Livraison gratuite à destination de France (Aucun autre résultat ne correspond à ces critères)

Pays

  • Edité par IGI Global, 2025

    ISBN 13 : 9798369377598

    Langue: anglais

    Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 173,59

    Autre devise
    EUR 4,74 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Etat : New. In.

  • Minakshi

    Edité par IGI Global, Hershey, 2025

    ISBN 13 : 9798369377598

    Langue: anglais

    Vendeur : CitiRetail, Stevenage, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 182,83

    Autre devise
    EUR 29,69 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Edité par IGI Global, 2025

    ISBN 13 : 9798369377581

    Langue: anglais

    Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 228,16

    Autre devise
    EUR 4,74 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Etat : New. In.

  • Anchit Bijalwan

    Edité par Information Science Reference, 2025

    ISBN 13 : 9798369377581

    Langue: anglais

    Vendeur : CitiRetail, Stevenage, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 239,09

    Autre devise
    EUR 29,69 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Hardcover. Etat : new. Hardcover. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Minakshi

    Edité par IGI Global Apr 2025, 2025

    ISBN 13 : 9798369377598

    Langue: anglais

    Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 10,99 expédition depuis Allemagne vers France

    Destinations, frais et délais

    Quantité disponible : 2 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. Neuware - In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers.

  • Minakshi

    Edité par IGI Global, Hershey, 2025

    ISBN 13 : 9798369377598

    Langue: anglais

    Vendeur : AussieBookSeller, Truganina, VIC, Australie

    Évaluation du vendeur 3 sur 5 étoiles Evaluation 3 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 244,03

    Autre devise
    EUR 32,48 expédition depuis Australie vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Anchit Bijalwan

    Edité par IGI Global, 2025

    ISBN 13 : 9798369377581

    Langue: anglais

    Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 267,73

    Autre devise
    EUR 65,84 expédition depuis Etats-Unis vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Hardcover. Etat : new. Hardcover. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Anchit Bijalwan

    Edité par IGI Global, 2025

    ISBN 13 : 9798369377581

    Langue: anglais

    Vendeur : AussieBookSeller, Truganina, VIC, Australie

    Évaluation du vendeur 3 sur 5 étoiles Evaluation 3 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 314,72

    Autre devise
    EUR 32,48 expédition depuis Australie vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Hardcover. Etat : new. Hardcover. In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Minakshi

    Edité par IGI Global Apr 2025, 2025

    ISBN 13 : 9798369377581

    Langue: anglais

    Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 10,99 expédition depuis Allemagne vers France

    Destinations, frais et délais

    Quantité disponible : 2 disponible(s)

    Ajouter au panier

    Buch. Etat : Neu. Neuware - In the digital world, ensuring robust security is critical as cyber threats become more sophisticated and pervasive. Machine learning can be used to strengthen cybersecurity and offer dynamic solutions that can identify, predict, and mitigate potential risks with unprecedented accuracy. By analyzing vast amounts of data, detecting patterns, and adapting to evolving threats, machine learning enables security systems to autonomously respond to anomalies and protect sensitive information in real-time. As technology advances, the integration of machine learning into security systems represents a critical step towards creating adaptive protection against the complex challenges of modern cybersecurity. Further research into the potential of machine learning in enhancing security protocols may highlight its ability to prevent cyberattacks, detect vulnerabilities, and ensure resilient defenses. Exploiting Machine Learning for Robust Security explores the world of machine learning, discussing the darknet of threat detection and vulnerability assessment, malware analysis, and predictive security analysis. Using case studies, it explores machine learning for threat detection and bolstered online defenses. This book covers topics such as anomaly detection, threat intelligence, and machine learning, and is a useful resource for engineers, security professionals, computer scientists, academicians, and researchers.