Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 227,52
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 227,52
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 217,46
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.
Vendeur : moluna, Greven, Allemagne
EUR 227,74
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconve.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 203,39
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 203,64
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 300,92
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. reprint edition. 484 pages. 9.45x6.30x1.11 inches. In Stock.
Vendeur : dsmbooks, Liverpool, Royaume-Uni
EUR 283,12
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 318,78
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware - A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.
Vendeur : moluna, Greven, Allemagne
EUR 180,07
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconve.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 213,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems. 492 pp. Englisch.
Edité par Springer US, Springer US Okt 2011, 2011
ISBN 10 : 1461333431 ISBN 13 : 9781461333432
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 213,99
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 492 pp. Englisch.