Edité par LAP LAMBERT Academic Publishing, 2017
ISBN 10 : 365991777X ISBN 13 : 9783659917776
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 116,80
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 256 pages. 8.66x5.91x0.58 inches. In Stock.
Edité par LAP LAMBERT Academic Publishing Feb 2017, 2017
ISBN 10 : 365991777X ISBN 13 : 9783659917776
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 69,90
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Production forecasting and reservoir modeling play vital roles in optimal field development plan and management of petroleum reservoirs. This motivates engineers to develop computationally efficient and fast numerical methods capable of constructing history matched reservoir models producing reliable production forecasts. Relatively two new soft computing techniques successfully applied for automatic history matching and production forecasting. The first approach is artificial neural networks (ANN) based modeling, and the 2nd is genetic algorithm (GA) based optimization. A higher-order neural network (HONN) with higher-order synaptic operation (HOSO) architecture that embeds linear (conventional), quadratic (QSO) and cubic synaptic operations (CSO) used for forecasting real field oil production. For automatic history matching problem through reservoir characterization, a global optimization method called adaptive genetic algorithm (AGA) was employed. Adaptive genetic operators of AGA dynamically adjusts control parameters during evolution. The performance of both soft computing methods in achieving fast convergence rate and reduced computational efforts are presented in this book. 256 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2017
ISBN 10 : 365991777X ISBN 13 : 9783659917776
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 69,90
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Production forecasting and reservoir modeling play vital roles in optimal field development plan and management of petroleum reservoirs. This motivates engineers to develop computationally efficient and fast numerical methods capable of constructing history matched reservoir models producing reliable production forecasts. Relatively two new soft computing techniques successfully applied for automatic history matching and production forecasting. The first approach is artificial neural networks (ANN) based modeling, and the 2nd is genetic algorithm (GA) based optimization. A higher-order neural network (HONN) with higher-order synaptic operation (HOSO) architecture that embeds linear (conventional), quadratic (QSO) and cubic synaptic operations (CSO) used for forecasting real field oil production. For automatic history matching problem through reservoir characterization, a global optimization method called adaptive genetic algorithm (AGA) was employed. Adaptive genetic operators of AGA dynamically adjusts control parameters during evolution. The performance of both soft computing methods in achieving fast convergence rate and reduced computational efforts are presented in this book.
Edité par LAP LAMBERT Academic Publishing, 2017
ISBN 10 : 365991777X ISBN 13 : 9783659917776
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 56,63
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Chakra N C ChithraDr. Chithra Chakra holds Ph.D. in Computer Science & Engineering from University of Petroleum & Energy Studies, India, working as Research Engineer in ADRIC- The Petroleum Institute, Abu Dhabi. Her research focus on.