scikit-learn : Machine Learning Simplified
Raúl Garreta
Vendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Neuf(s) - Couverture souple
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au panierVendu par AHA-BUCH GmbH, Einbeck, Allemagne
Vendeur AbeBooks depuis 14 août 2006
Etat : Neuf
Quantité disponible : 1 disponible(s)
Ajouter au paniernach der Bestellung gedruckt Neuware - Printed after ordering.
N° de réf. du vendeur 9781788833479
Implement scikit-learn into every step of the data science pipeline
Key Features:
- Use Python and scikit-learn to create intelligent applications
- Discover how to apply algorithms in a variety of situations to tackle common and not-so common challenges in the machine learning domain
- A practical, example-based guide to help you gain expertise in implementing and evaluating machine learning systems using scikit-learn
Book Description:
Machine learning, the art of creating applications that learn from experience and data, has been around for many years. Python is quickly becoming the go-to language for analysts and data scientists due to its simplicity and flexibility; moreover, within the Python data space, scikit-learn is the unequivocal choice for machine learning. The course combines an introduction to some of the main concepts and methods in machine learning with practical, hands-on examples of real-world problems. The course starts by walking through different methods to prepare your data-be it a dataset with missing values or text columns that require the categories to be turned into indicator variables. After the data is ready, you'll learn different techniques aligned with different objectives-be it a dataset with known outcomes such as sales by state, or more complicated problems such as clustering similar customers. Finally, you'll learn how to polish your algorithm to ensure that it's both accurate and resilient to new datasets. You will learn to incorporate machine learning in your applications. Ranging from handwritten digit recognition to document classification, examples are solved step-by-step using scikit-learn and Python. By the end of this course you will have learned how to build applications that learn from experience, by applying the main concepts and techniques of machine learning.
What You Will Learn:
- Review fundamental concepts including supervised and unsupervised experiences, common tasks, and performance metrics
- Classify objects (from documents to human faces and flower species) based on some of their features, using a variety of methods from Support Vector Machines to Naïve Bayes
- Use Decision Trees to explain the main causes of certain phenomena such as passenger survival on the Titanic
- Evaluate the performance of machine learning systems in common tasks
- Master algorithms of various levels of complexity and learn how to analyze data at the same time
- Learn just enough math to think about the connections between various algorithms
- Customize machine learning algorithms to fit your problem, and learn how to modify them when the situation calls for it
- Incorporate other packages from the Python ecosystem to munge and visualize your dataset
- Improve the way you build your models using parallelization techniques
Who this book is for:
If you are a programmer and want to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this is the course for you. No previous experience with machine-learning algorithms is required.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Visitez la page d’accueil du vendeur
Conditions générales et informations client
I. Conditions générales
§ 1 Dispositions de base
(1) Les conditions générales suivantes s?appliquent à tous les contrats que vous concluez avec nous en tant que fournisseur (AHA-BUCH GmbH) via les plateformes Internet AbeBooks et/ou ZVAB. Sauf accord contraire, l?inclusion de l?une de vos propres conditions générales que vous utilisez sera contestée
(2) Un consommateur au sens des règlements suivants est toute personne physique qui conclut une transact...
Pour plus d'informationNous expédions votre commande après les avoir reçues
pour les articles disponibles au plus tard 24 heures,
pour les articles avec un approvisionnement de nuit au plus tard 48 heures.
Dans le cas où nous devons commander un article auprès de notre fournisseur, notre délai d’expédition dépend de la date de réception des articles, mais les articles seront expédiés le jour même.
Notre objectif est d’envoyer les articles commandés de la manière la plus rapide, mais aussi la plus efficace et la plus sécurisée à nos clients.