Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. During that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in W onham [76J). At the same time, Girsanov [25J and Howard [26J made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4J. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8J, Mine and Osaki [55J, and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book deals with the optimal control of solutions of fully observable Itô-type stochastic differential equations. The validity of the Bellman differential equation for payoff functions is proved and rules for optimal control strategies are developed. Topics include optimal stopping; one dimensional controlled diffusion; the Lp-estimates of stochastic integral distributions; the existence theorem for stochastic equations; the Itô formula for functions; and the Bellman principle, equation, and normalized equation.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,95 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Antiquariat Bernhardt, Kassel, Allemagne
Karton. Etat : Sehr gut. Applications of Mathematics, Band 14. Zust: Gutes Exemplar. 308 Seiten Englisch 602g. N° de réf. du vendeur 485285
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. During that period an extensive literature appeared on optimal stochastic control using the quadratic . N° de réf. du vendeur 5911680
Quantité disponible : Plus de 20 disponibles
Vendeur : BennettBooksLtd, North Las Vegas, NV, Etats-Unis
hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-0387904611
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387904610_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. During that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in W onham [76J). At the same time, Girsanov [25J and Howard [26J made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4J. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8J, Mine and Osaki [55J, and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory. 324 pp. Englisch. N° de réf. du vendeur 9780387904610
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. During that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in W onham [76J). At the same time, Girsanov [25J and Howard [26J made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4J. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8J, Mine and Osaki [55J, and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory. 324 pp. Englisch. N° de réf. du vendeur 9780387904610
Quantité disponible : 2 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_363563490
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Stochastic control theory is a relatively young branch of mathematics. The beginning of its intensive development falls in the late 1950s and early 1960s. During that period an extensive literature appeared on optimal stochastic control using the quadratic performance criterion (see references in W onham [76J). At the same time, Girsanov [25J and Howard [26J made the first steps in constructing a general theory, based on Bellman's technique of dynamic programming, developed by him somewhat earlier [4J. Two types of engineering problems engendered two different parts of stochastic control theory. Problems of the first type are associated with multistep decision making in discrete time, and are treated in the theory of discrete stochastic dynamic programming. For more on this theory, we note in addition to the work of Howard and Bellman, mentioned above, the books by Derman [8J, Mine and Osaki [55J, and Dynkin and Yushkevich [12]. Another class of engineering problems which encouraged the development of the theory of stochastic control involves time continuous control of a dynamic system in the presence of random noise. The case where the system is described by a differential equation and the noise is modeled as a time continuous random process is the core of the optimal control theory of diffusion processes. This book deals with this latter theory. N° de réf. du vendeur 9780387904610
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 324. N° de réf. du vendeur 263890831
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 324 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. N° de réf. du vendeur 5038416
Quantité disponible : 4 disponible(s)