Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non- negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func- tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 11,86 expédition depuis Etats-Unis vers France
Destinations, frais et délaisGratuit expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Better World Books, Mishawaka, IN, Etats-Unis
Etat : Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur GRP91586192
Quantité disponible : 1 disponible(s)
Vendeur : Attic Books (ABAC, ILAB), London, ON, Canada
Hardcover. Etat : ex library-good. Die Grundlehren der mathematischen Wissenschaften/A Series of Comprehensive Studies in Mathematics 272. xv, 461 p. 24 cm. Yellow cloth. Ex library with labels on spine and rear pastedown, ink stamps on top edge and title. Spine and parts of boards faded. Dents in lower edges. N° de réf. du vendeur 147383
Quantité disponible : 1 disponible(s)
Vendeur : Powell's Bookstores Chicago, ABAA, Chicago, IL, Etats-Unis
Etat : Used - Good. 1984. Hardcover. Cloth, no dj. Binding beginning to separate at front hinge, some gauze visible. Despite this flaw, text block is firm and clean, and volume is in otherwise very good condition. Good. N° de réf. du vendeur S76162
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-82731
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-89528
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 461. N° de réf. du vendeur 261537034
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 461. N° de réf. du vendeur 6343637
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 461. N° de réf. du vendeur 181537024
Quantité disponible : 1 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_434972084
Quantité disponible : 1 disponible(s)