Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Charles Bouveyron is Full Professor of Statistics at Université Côte d'Azur and the Chair of Excellence in Data Science at Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt. He has published extensively on model-based clustering, particularly for networks and high-dimensional data.
Gilles Celeux is Director of Research Emeritus at Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt. He is one of the founding researchers in model-based clustering, having published extensively in the area for thrity-five years.
T. Brendan Murphy is Full Professor in the School of Mathematics and Statistics at University College Dublin. His research interests include model-based clustering, classification, network modeling and latent variable modeling.
Adrian E. Raftery is the Boeing International Professor of Statistics and Sociology at the University of Washington. He is one of the founding researchers in model-based clustering, having published in the area since 1984.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,02 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 6,86 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781108494205
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26379775359
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781108494205_new
Quantité disponible : 10 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 383080096
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18379775349
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur L2-9781108494205
Quantité disponible : 9 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
HRD. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur L2-9781108494205
Quantité disponible : 9 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 35836427-n
Quantité disponible : 13 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781108494205
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 427 pages. 10.00x7.00x1.00 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __110849420X
Quantité disponible : 1 disponible(s)