Articles liés à Stochastic Optimal Control in Infinite Dimension: Dynamic...

Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and Hjb Equations - Couverture souple

 
9783319850535: Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and Hjb Equations

Synopsis

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.


Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Giorgio Fabbri is a CNRS Researcher at the Aix-Marseille School of Economics, Marseille, France. He works on optimal control of deterministic and stochastic systems, notably in infinite dimensions, with applications to economics. He has also published various papers in several economic areas, in particular in growth theory and development economics.

Fausto Gozzi is a Full Professor of Mathematics for Economics and Finance at Luiss University, Roma, Italy. His main research field is the optimal control of finite and infinite-dimensional systems and its economic and financial applications. He is the author of many papers in various subjects areas, from Mathematics, to Economics and Finance.

Andrzej Swiech is a Full Professor at the School of Mathematics, Georgia Institute of Technology, Atlanta, USA. He received Ph.D. from UCSB in 1993. His main research interests are in nonlinear PDEs and integro-PDEs, PDEs in infinite dimensional spaces, viscosity solutions, stochastic and deterministic optimal control, stochastic PDEs, differential games, mean-field games, and the calculus of variations.

*Marco Fuhrman* is a Full Professor of Probability and Mathematical Statistics at the University of Milano, Italy. His main research topics are stochastic differential equations in infinite dimensions and backward stochastic differential equations for optimal control of stochastic processes.

*Gianmario Tessitore* is a Full Professor of Probability and Mathematical Statistics at Milano-Bicocca University. He is the author of several scientific papers on control of stochastic differential equations in finite and infinite dimensions. He is, in particular, interested in the applications of backward stochastic differential equations in stochastic control.


Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer International Publishing AG
  • Date d'édition2018
  • ISBN 10 3319850539
  • ISBN 13 9783319850535
  • ReliureBroché
  • Langueanglais
  • Nombre de pages916
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 206,40

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783319530666: Stochastic Optimal Control in Infinite Dimension: Dynamic Programming and HJB Equations

Edition présentée

ISBN 10 :  3319530666 ISBN 13 :  9783319530666
Editeur : Springer International Publishin..., 2017
Couverture rigide

Résultats de recherche pour Stochastic Optimal Control in Infinite Dimension: Dynamic...

Image fournie par le vendeur

Giorgio Fabbri|Fausto Gozzi|Andrzej Swiech
ISBN 10 : 3319850539 ISBN 13 : 9783319850535
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. With a Contribution by M. Fuhrman and G. Tessitore|Provides a systematic survey of the main available results, with proofs and references Gives a complete presentation of the theory of regular and viscosity solutions of second-order HJB equations. N° de réf. du vendeur 458625369

Contacter le vendeur

Acheter neuf

EUR 206,40
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Giorgio Fabbri
ISBN 10 : 3319850539 ISBN 13 : 9783319850535
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces. N° de réf. du vendeur 9783319850535

Contacter le vendeur

Acheter neuf

EUR 246,09
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Giorgio Fabbri
ISBN 10 : 3319850539 ISBN 13 : 9783319850535
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces. 940 pp. Englisch. N° de réf. du vendeur 9783319850535

Contacter le vendeur

Acheter neuf

EUR 246,09
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Giorgio Fabbri
ISBN 10 : 3319850539 ISBN 13 : 9783319850535
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Providing an introduction to stochastic optimal control in in¿nite dimension, this book gives a complete account of the theory of second-order HJB equations in in¿nite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in in¿nite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in in¿nite dimension. Readers from other ¿elds who want to learn the basic theory will also ¿nd it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in ¿nite dimension, and the basics of stochastic analysis and stochastic equations in in¿nite-dimensional spaces.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 940 pp. Englisch. N° de réf. du vendeur 9783319850535

Contacter le vendeur

Acheter neuf

EUR 246,09
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Fabbri, Giorgio; Gozzi, Fausto; ?wi?ch, Andrzej
Edité par Springer, 2018
ISBN 10 : 3319850539 ISBN 13 : 9783319850535
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26376468065

Contacter le vendeur

Acheter neuf

EUR 364
Autre devise
Frais de port : EUR 7,84
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Fabbri, Giorgio; Gozzi, Fausto; ?wi?ch, Andrzej
Edité par Springer, 2018
ISBN 10 : 3319850539 ISBN 13 : 9783319850535
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 369610174

Contacter le vendeur

Acheter neuf

EUR 374,07
Autre devise
Frais de port : EUR 10,35
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Fabbri, Giorgio; Gozzi, Fausto; ?wi?ch, Andrzej
Edité par Springer, 2018
ISBN 10 : 3319850539 ISBN 13 : 9783319850535
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18376468075

Contacter le vendeur

Acheter neuf

EUR 388,31
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier