I. Integer Points.- §1. Statement of the Problem, Auxiliary Remarks, and the Simplest Results.- §2. The Connection Between Problems in the Theory of Integer Points and Trigonometric Sums.- §3. Theorems on Trigonometric Sums.- §4. Integer Points in a Circle and Under a Hyperbola.- Exercises.- II. Entire Functions of Finite Order.- §1. Infinite Products. Weierstrass's Formula.- §2. Entire Functions of Finite Order.- Exercises.- III. The Euler Gamma Function.- §1. Definition and Simplest Properties.- §2. Stirling's Formula.- §3. The Euler Beta Function and Dirichlet's Integral.- Exercises.- IV. The Riemann Zeta Function.- §1. Definition and Simplest Properties.- §2. Simplest Theorems on the Zeros.- §3. Approximation by a Finite Sum.- Exercises.- V. The Connection Between the Sum of the Coefficients of a Dirichlet Series and the Function Defined by this Series.- §1. A General Theorem.- §2. The Prime Number Theorem.- §3. Representation of the Chebyshev Functions as Sums Over the Zeros of the Zeta Function.- Exercises.- VI. The Method of I.M. Vinogradov in the Theory of the Zeta Function.- §1. Theorem on the Mean Value of the Modulus of a Trigonometric Sum.- §2. Estimate of a Zeta Sum.- §3. Estimate for the Zeta Function Close to the Line ? = 1.- §4. A Function-Theoretic Lemma.- §5. A New Boundary for the Zeros of the Zeta Function.- §6. A New Remainder Term in the Prime Number Theorem.- Exercises.- VII. The Density of the Zeros of the Zeta Function and the Problem of the Distribution of Prime Numbers in Short Intervals.- §1. The Simplest Density Theorem.- §2. Prime Numbers in Short Intervals.- Exercises.- VIII. Dirichlet L-Functions.- §1. Characters and their Properties.- §2. Definition of L-Functions and their Simplest Properties.- §3. The Functional Equation.- §4. Non-trivial Zeros; Expansion of the Logarithmic Derivative as a Series in the Zeros.- §5. Simplest Theorems on the Zeros.- Exercises.- IX. Prime Numbers in Arithmetic Progressions.- §1. An Explicit Formula.- §2. Theorems on the Boundary of the Zeros.- §3. The Prime Number Theorem for Arithmetic Progressions.- Exercises.- X. The Goldbach Conjecture.- §1. Auxiliary Statements.- §2. The Circle Method for Goldbach's Problem.- §3. Linear Trigonometric Sums with Prime Numbers.- §4. An Effective Theorem.- Exercises.- XI. Waring's Problem.- §1. The Circle Method for Waring's Problem.- §2. An Estimate for Weyl Sums and the Asymptotic Formula for Waring's Problem.- §3. An Estimate for G(n).- Exercises.- Hints for the Solution of the Exercises.- Table of Prime Numbers
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 15 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 4,67 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Die Wortfreunde - Antiquariat Wirthwein Matthias Wirthwein, Mannheim, Allemagne
Gebundene Ausgabe. 222 Seiten 1993. Neuwertiges Exemplar. Sprache: Englisch Gewicht in Gramm: 500. N° de réf. du vendeur 41320
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783540533450_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Antiquariat Nam, UstId: DE164665634, Freiburg, Allemagne
xi, 222 S. Pbd. Neuwertig. dt. N° de réf. du vendeur 153437
Quantité disponible : 1 disponible(s)
Vendeur : Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Royaume-Uni
Etat : Very Good. Slight knock to lower outer corner of rear cover. Content in almost mint condition. N° de réf. du vendeur 105669-4
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 240 pages. 6.14x0.56x9.21 inches. In Stock. N° de réf. du vendeur x-3540533451
Quantité disponible : 2 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Hardcover. Etat : Like New. LIKE NEW. book. N° de réf. du vendeur ERICA82835405334513
Quantité disponible : 1 disponible(s)