Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h o, i. e. the infimum of all wE JR such that II exp(tA)II:::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A: A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t, u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo- nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Apr0316110058796
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. The focus of this text is on the relationship between asymptotic behaviour of the semigroup and spectral properties of its infinitesimal generator. Recent developments in the field are covered, such as the Arendt-Batty-Lyubich-Vu theorem, the spectral mapping theorem of Latushkin and Montgomery-Smith, Weis's theorem on stability of positive semigroups in Lp-spaces, the stability theorem for semigroups whose resolvent is bounded in a half-plane, and a systematic theory of individual stability. Presents an account of the theory of asymptotic behaviour of semigroups of linear operators acting in a Banach space. This work focuses on the relationship between asymptotic behaviour of the semigroup and spectral properties of its infinitesimal generator. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9783764354558
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9783764354558
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9783764354558_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO'(A)) = O'(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O'(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A. 241 pp. Englisch. N° de réf. du vendeur 9783764354558
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. N° de réf. du vendeur 5279134
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. Presents an account of the theory of asymptotic behaviour of semigroups of linear operators acting in a Banach space. This work focuses on the relationship between asymptotic behaviour of the semigroup and spectral properties of its infinitesimal generator. Series: Operator Theory: Advances and Applications. Num Pages: 253 pages, biography. BIC Classification: PBKF; PBKJ. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 234 x 156 x 15. Weight in Grams: 542. . 1996. Hardback. . . . . N° de réf. du vendeur V9783764354558
Quantité disponible : 15 disponible(s)
Vendeur : BennettBooksLtd, Los Angeles, CA, Etats-Unis
hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-3764354550
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. The Asymptotic Behaviour of Semigroups of Linear Operators | Jan Van Neerven | Buch | xii | Englisch | 1996 | Birkhäuser | EAN 9783764354558 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 101647508
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO'(A)) = O'(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O'(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 256 pp. Englisch. N° de réf. du vendeur 9783764354558
Quantité disponible : 2 disponible(s)