The Enhanced Intrusion Detection System utilizing a Hybrid Machine Learning Approach is a security system that leverages a combination of machine learning algorithms to detect and prevent unauthorized access to computer networks. The system analyzes network traffic patterns and monitors user behavior to identify potential threats. By using a hybrid machine learning approach, the system is designed to improve its ability to detect and prevent cyber attacks, ultimately enhancing network security.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26401060906
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 395316213
Quantité disponible : 4 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The Enhanced Intrusion Detection System utilizing a Hybrid Machine Learning Approach is a security system that leverages a combination of machine learning algorithms to detect and prevent unauthorized access to computer networks. The system analyzes network traffic patterns and monitors user behavior to identify potential threats. By using a hybrid machine learning approach, the system is designed to improve its ability to detect and prevent cyber attacks, ultimately enhancing network security. 76 pp. Englisch. N° de réf. du vendeur 9786206158899
Quantité disponible : 2 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18401060896
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singhal Mr. Pavan KumarPavan K Singhal is working as an Assistant Professor in the dept. of CSE at Moradabad Institute of Technology,UP. He has an experience of more than 17 years.Chandra Prakash Bhargava is working as an Assistant P. N° de réf. du vendeur 874096586
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -The Enhanced Intrusion Detection System utilizing a Hybrid Machine Learning Approach is a security system that leverages a combination of machine learning algorithms to detect and prevent unauthorized access to computer networks. The system analyzes network traffic patterns and monitors user behavior to identify potential threats. By using a hybrid machine learning approach, the system is designed to improve its ability to detect and prevent cyber attacks, ultimately enhancing network security.Books on Demand GmbH, Überseering 33, 22297 Hamburg 76 pp. Englisch. N° de réf. du vendeur 9786206158899
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The Enhanced Intrusion Detection System utilizing a Hybrid Machine Learning Approach is a security system that leverages a combination of machine learning algorithms to detect and prevent unauthorized access to computer networks. The system analyzes network traffic patterns and monitors user behavior to identify potential threats. By using a hybrid machine learning approach, the system is designed to improve its ability to detect and prevent cyber attacks, ultimately enhancing network security. N° de réf. du vendeur 9786206158899
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Enhanced IDS using Hybrid Machine Learning Approach | Enhancing Network Security with Hybrid Machine Learning | Pavan Kumar Singhal (u. a.) | Taschenbuch | Englisch | 2023 | LAP LAMBERT Academic Publishing | EAN 9786206158899 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. N° de réf. du vendeur 126927120
Quantité disponible : 5 disponible(s)