Algebraic Function : Fields and Codes

Stichtenoth, Henning

ISBN 10: 3540564896 ISBN 13: 9783540564898
Edité par Springer, 1993
Ancien(s) ou d'occasion Couverture souple

Vendeur Better World Books, Mishawaka, IN, Etats-Unis Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Vendeur AbeBooks depuis 3 août 2006


A propos de cet article

Description :

Former library copy. Pages intact with minimal writing/highlighting. The binding may be loose and creased. Dust jackets/supplements are not included. Includes library markings. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good. N° de réf. du vendeur 8180724-6

Signaler cet article

Synopsis :

This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. The topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V.D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission.

Présentation de l'éditeur:

This is an expanded edition of a popular textbook that provides a purely algebraic, self-contained and in-depth exposition of the theory of function fields. It contains numerous exercises, some fairly simple, some quite difficult.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Détails bibliographiques

Titre : Algebraic Function : Fields and Codes
Éditeur : Springer
Date d'édition : 1993
Reliure : Couverture souple
Etat : Good
Edition : 1st Edition.

Meilleurs résultats de recherche sur AbeBooks

Image fournie par le vendeur

Stichtenoth, Henning
ISBN 10 : 3540564896 ISBN 13 : 9783540564898
Ancien ou d'occasion Softcover Edition originale

Vendeur : Versandantiquariat Abendstunde, Ludwigshafen am Rhein, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Softcover. Etat : gut. Erste Aufl. Kartonierte Broschur mit Rücken- und Deckeltitel. Der Buchrücken etwas lichtgebleicht, die Schnitte leicht berieben, das Titelblatt mit Schatten eines entfernten Etiketts, einzelne Seiten mit kleinem bzw. leichtem Knick einer Ecke, ansonsten guter Erhaltungszustand. "This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. Topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V. D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission." (Verlagstext) Henning Stichtenoth (* 3. November 1944) ist ein deutscher Mathematiker. Stichtenoth promovierte 1972 bei Peter Roquette an der Ruprecht-Karls-Universität Heidelberg über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. Bis 2007 war er Professor an der Universität Duisburg-Essen. Zurzeit ist er Professor an der Sabanci-Universität in Istanbul. Er befasst sich mit algebraischer Geometrie, algebraischen Funktionenkörpern und deren Anwendung in der Kodierungstheorie und Kryptographie. (Wikipedia) In englischer Sprache. X, 260, (2) pages. Groß 8° (155 x 235mm). N° de réf. du vendeur BN32889

Contacter le vendeur

Acheter D'occasion

EUR 17,95
Expédition à EUR 70
Expédition depuis Allemagne vers Etats-Unis

Quantité disponible : 1 disponible(s)

Ajouter au panier