Vendeur
Better World Books, Mishawaka, IN, Etats-Unis
Évaluation du vendeur 5 sur 5 étoiles
Vendeur AbeBooks depuis 3 août 2006
Former library copy. Pages intact with minimal writing/highlighting. The binding may be loose and creased. Dust jackets/supplements are not included. Includes library markings. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good. N° de réf. du vendeur 8180724-6
This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. The topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V.D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission.
Présentation de l'éditeur:
This is an expanded edition of a popular textbook that provides a purely algebraic, self-contained and in-depth exposition of the theory of function fields. It contains numerous exercises, some fairly simple, some quite difficult.
Titre : Algebraic Function : Fields and Codes
Éditeur : Springer
Date d'édition : 1993
Reliure : Couverture souple
Etat : Good
Edition : 1st Edition.
Vendeur : Versandantiquariat Abendstunde, Ludwigshafen am Rhein, Allemagne
Softcover. Etat : gut. Erste Aufl. Kartonierte Broschur mit Rücken- und Deckeltitel. Der Buchrücken etwas lichtgebleicht, die Schnitte leicht berieben, das Titelblatt mit Schatten eines entfernten Etiketts, einzelne Seiten mit kleinem bzw. leichtem Knick einer Ecke, ansonsten guter Erhaltungszustand. "This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. Topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V. D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission." (Verlagstext) Henning Stichtenoth (* 3. November 1944) ist ein deutscher Mathematiker. Stichtenoth promovierte 1972 bei Peter Roquette an der Ruprecht-Karls-Universität Heidelberg über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. Bis 2007 war er Professor an der Universität Duisburg-Essen. Zurzeit ist er Professor an der Sabanci-Universität in Istanbul. Er befasst sich mit algebraischer Geometrie, algebraischen Funktionenkörpern und deren Anwendung in der Kodierungstheorie und Kryptographie. (Wikipedia) In englischer Sprache. X, 260, (2) pages. Groß 8° (155 x 235mm). N° de réf. du vendeur BN32889
Quantité disponible : 1 disponible(s)