Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Buchpark, Trebbin, Allemagne
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Speedyhen, London, Royaume-Uni
EUR 37,46
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : NEW.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
EUR 44,35
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : SMASS Sellers, IRVING, TX, Etats-Unis
EUR 46,30
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Basi6 International, Irving, TX, Etats-Unis
EUR 44,35
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierEtat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
Edité par Princeton University Press (edition ), 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
EUR 38,34
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : As New. It's a preowned item in almost perfect condition. It has no visible cosmetic imperfections. May come without any shrink wrap; pages are clean and not marred by notes or folds of any kind.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 41,61
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 39,40
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 45,05
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 41,77
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, US, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 50,24
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. An ideal textbook for complete beginners-teaches from scratch R, statistics, and the fundamentals of quantitative social scienceData Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Assuming no prior knowledge of statistics and coding and only minimal knowledge of math, the book teaches the fundamentals of survey research, predictive models, and causal inference while analyzing data from published studies with the statistical program R. It teaches not only how to perform the data analyses but also how to interpret the results and identify the analyses' strengths and limitations.Progresses by teaching how to solve one kind of problem after another, bringing in methods as needed. It teaches, in this order, how to (1) estimate causal effects with randomized experiments, (2) visualize and summarize data, (3) infer population characteristics, (4) predict outcomes, (5) estimate causal effects with observational data, and (6) generalize from sample to population.Flips the script of traditional statistics textbooks. It starts by estimating causal effects with randomized experiments and postpones any discussion of probability and statistical inference until the final chapters. This unconventional order engages students by demonstrating from the very beginning how data analysis can be used to answer interesting questions, while reserving more abstract, complex concepts for later chapters.Provides a step-by-step guide to analyzing real-world data using the powerful, open-source statistical program R, which is free for everyone to use. The datasets are provided on the book's website so that readers can learn how to analyze data by following along with the exercises in the book on their own computer.Assumes no prior knowledge of statistics or coding.Specifically designed to accommodate students with a variety of math backgrounds. It includes supplemental materials for students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose.Provides cheatsheets of statistical concepts and R code.Comes with instructor materials (upon request), including sample syllabi, lecture slides, and additional replication-style exercises with solutions and with the real-world datasets analyzed. Looking for a more advanced introduction? Consider Quantitative Social Science by Kosuke Imai. In addition to covering the material in Data Analysis for Social Science, it teaches diffs-in-diffs models, heterogeneous effects, text analysis, and regression discontinuity designs, among other things.
Edité par Princeton University Press 2022-11-29, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 41,48
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierPaperback. Etat : New.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 36,02
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 37,44
Autre deviseQuantité disponible : 8 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 56,63
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Edité par Princeton University Press, US, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 55,20
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. An ideal textbook for complete beginners-teaches from scratch R, statistics, and the fundamentals of quantitative social scienceData Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Assuming no prior knowledge of statistics and coding and only minimal knowledge of math, the book teaches the fundamentals of survey research, predictive models, and causal inference while analyzing data from published studies with the statistical program R. It teaches not only how to perform the data analyses but also how to interpret the results and identify the analyses' strengths and limitations.Progresses by teaching how to solve one kind of problem after another, bringing in methods as needed. It teaches, in this order, how to (1) estimate causal effects with randomized experiments, (2) visualize and summarize data, (3) infer population characteristics, (4) predict outcomes, (5) estimate causal effects with observational data, and (6) generalize from sample to population.Flips the script of traditional statistics textbooks. It starts by estimating causal effects with randomized experiments and postpones any discussion of probability and statistical inference until the final chapters. This unconventional order engages students by demonstrating from the very beginning how data analysis can be used to answer interesting questions, while reserving more abstract, complex concepts for later chapters.Provides a step-by-step guide to analyzing real-world data using the powerful, open-source statistical program R, which is free for everyone to use. The datasets are provided on the book's website so that readers can learn how to analyze data by following along with the exercises in the book on their own computer.Assumes no prior knowledge of statistics or coding.Specifically designed to accommodate students with a variety of math backgrounds. It includes supplemental materials for students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose.Provides cheatsheets of statistical concepts and R code.Comes with instructor materials (upon request), including sample syllabi, lecture slides, and additional replication-style exercises with solutions and with the real-world datasets analyzed. Looking for a more advanced introduction? Consider Quantitative Social Science by Kosuke Imai. In addition to covering the material in Data Analysis for Social Science, it teaches diffs-in-diffs models, heterogeneous effects, text analysis, and regression discontinuity designs, among other things.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 40,34
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Princeton University Press, US, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
EUR 56,22
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. An ideal textbook for complete beginners-teaches from scratch R, statistics, and the fundamentals of quantitative social scienceData Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Assuming no prior knowledge of statistics and coding and only minimal knowledge of math, the book teaches the fundamentals of survey research, predictive models, and causal inference while analyzing data from published studies with the statistical program R. It teaches not only how to perform the data analyses but also how to interpret the results and identify the analyses' strengths and limitations.Progresses by teaching how to solve one kind of problem after another, bringing in methods as needed. It teaches, in this order, how to (1) estimate causal effects with randomized experiments, (2) visualize and summarize data, (3) infer population characteristics, (4) predict outcomes, (5) estimate causal effects with observational data, and (6) generalize from sample to population.Flips the script of traditional statistics textbooks. It starts by estimating causal effects with randomized experiments and postpones any discussion of probability and statistical inference until the final chapters. This unconventional order engages students by demonstrating from the very beginning how data analysis can be used to answer interesting questions, while reserving more abstract, complex concepts for later chapters.Provides a step-by-step guide to analyzing real-world data using the powerful, open-source statistical program R, which is free for everyone to use. The datasets are provided on the book's website so that readers can learn how to analyze data by following along with the exercises in the book on their own computer.Assumes no prior knowledge of statistics or coding.Specifically designed to accommodate students with a variety of math backgrounds. It includes supplemental materials for students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose.Provides cheatsheets of statistical concepts and R code.Comes with instructor materials (upon request), including sample syllabi, lecture slides, and additional replication-style exercises with solutions and with the real-world datasets analyzed. Looking for a more advanced introduction? Consider Quantitative Social Science by Kosuke Imai. In addition to covering the material in Data Analysis for Social Science, it teaches diffs-in-diffs models, heterogeneous effects, text analysis, and regression discontinuity designs, among other things.
Edité par Princeton University Press, 2023
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 49,64
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Über den AutorElena Llaudet is Associate Professor of Political Science at Suffolk University in Boston. Kosuke Imai is Professor of Government and of Statistics at Harvard University.Klappentext.
Edité par Princeton University Press, US, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
EUR 57,45
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. An ideal textbook for complete beginners-teaches from scratch R, statistics, and the fundamentals of quantitative social scienceData Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Assuming no prior knowledge of statistics and coding and only minimal knowledge of math, the book teaches the fundamentals of survey research, predictive models, and causal inference while analyzing data from published studies with the statistical program R. It teaches not only how to perform the data analyses but also how to interpret the results and identify the analyses' strengths and limitations.Progresses by teaching how to solve one kind of problem after another, bringing in methods as needed. It teaches, in this order, how to (1) estimate causal effects with randomized experiments, (2) visualize and summarize data, (3) infer population characteristics, (4) predict outcomes, (5) estimate causal effects with observational data, and (6) generalize from sample to population.Flips the script of traditional statistics textbooks. It starts by estimating causal effects with randomized experiments and postpones any discussion of probability and statistical inference until the final chapters. This unconventional order engages students by demonstrating from the very beginning how data analysis can be used to answer interesting questions, while reserving more abstract, complex concepts for later chapters.Provides a step-by-step guide to analyzing real-world data using the powerful, open-source statistical program R, which is free for everyone to use. The datasets are provided on the book's website so that readers can learn how to analyze data by following along with the exercises in the book on their own computer.Assumes no prior knowledge of statistics or coding.Specifically designed to accommodate students with a variety of math backgrounds. It includes supplemental materials for students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose.Provides cheatsheets of statistical concepts and R code.Comes with instructor materials (upon request), including sample syllabi, lecture slides, and additional replication-style exercises with solutions and with the real-world datasets analyzed. Looking for a more advanced introduction? Consider Quantitative Social Science by Kosuke Imai. In addition to covering the material in Data Analysis for Social Science, it teaches diffs-in-diffs models, heterogeneous effects, text analysis, and regression discontinuity designs, among other things.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 44,74
Autre deviseQuantité disponible : 8 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 51
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 256 pages. 10.00x8.00x0.90 inches. In Stock.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 43,55
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 72,34
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 256 pages. 10.00x8.00x0.90 inches. In Stock.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Campus Bookstore, Denton, TX, Etats-Unis
EUR 25,14
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Acceptable. Ships FAST! May contain highlighting/underlining/notes/etc. May have used stickers on cover. Access codes and supplements are not guaranteed to be included with used books.FA25 Ships same or next day. Expedited shipping: 3-5 business days, Standard shipping: 4-14 business days.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199426 ISBN 13 : 9780691199429
Langue: anglais
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
EUR 86,33
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierhardcover. Etat : Fine.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199426 ISBN 13 : 9780691199429
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 91,31
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, Princeton, 2023
ISBN 10 : 0691199434 ISBN 13 : 9780691199436
Langue: anglais
Vendeur : Underground Books, ABAA, Carrollton, GA, Etats-Unis
EUR 35,07
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Very good. Paperback. 10" X 8". xii, 238pp. Very mild shelf wear to covers, corners, and edges of paper wraps. Pages are clean and unmarked. Binding is sound. ABOUT THIS BOOK: An ideal textbook for complete beginnersâ"teaches from scratch R, statistics, and the fundamentals of quantitative social science Data Analysis for Social Science provides a friendly introduction to the statistical concepts and programming skills needed to conduct and evaluate social scientific studies. Assuming no prior knowledge of statistics and coding and only minimal knowledge of math, the book teaches the fundamentals of survey research, predictive models, and causal inference while analyzing data from published studies with the statistical program R. It teaches not only how to perform the data analyses but also how to interpret the results and identify the analyses' strengths and limitations. Progresses by teaching how to solve one kind of problem after another, bringing in methods as needed. It teaches, in this order, how to (1) estimate causal effects with randomized experiments, (2) visualize and summarize data, (3) infer population characteristics, (4) predict outcomes, (5) estimate causal effects with observational data, and (6) generalize from sample to population. Flips the script of traditional statistics textbooks. It starts by estimating causal effects with randomized experiments and postpones any discussion of probability and statistical inference until the final chapters. This unconventional order engages students by demonstrating from the very beginning how data analysis can be used to answer interesting questions, while reserving more abstract, complex concepts for later chapters. -Provides a step-by-step guide to analyzing real-world data using the powerful, open-source statistical program R, which is free for everyone to use. The datasets are provided on the book's website so that readers can learn how to analyze data by following along with the exercises in the book on their own computer. -Assumes no prior knowledge of statistics or coding. -Specifically designed to accommodate students with a variety of math backgrounds. It includes supplemental materials for students with minimal knowledge of math and clearly identifies sections with more advanced material so that readers can skip them if they so choose. -Provides cheatsheets of statistical concepts and R code. -Comes with instructor materials (upon request), including sample syllabi, lecture slides, and additional replication-style exercises with solutions and with the real-world datasets analyzed. Looking for a more advanced introduction? Consider Quantitative Social Science by Kosuke Imai. In addition to covering the material in Data Analysis for Social Science, it teaches diffs-in-diffs models, heterogeneous effects, text analysis, and regression discontinuity designs, among other things.(Publisher).
Vendeur : moluna, Greven, Allemagne
EUR 98,82
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierGebunden. Etat : New. Über den AutorElena Llaudet is Associate Professor of Political Science at Suffolk University in Boston. Kosuke Imai is Professor of Government and of Statistics at Harvard University.Klappentext.
Edité par Princeton University Press, 2022
ISBN 10 : 0691199426 ISBN 13 : 9780691199429
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 95,54
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.