EUR 154,16
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
EUR 157,16
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
EUR 158,74
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
EUR 152,47
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
EUR 165,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 152,46
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
EUR 166,95
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 184,39
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 193,68
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Springer Nature Switzerland AG, CH, 2019
ISBN 10 : 3030074463 ISBN 13 : 9783030074463
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 216,70
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. Softcover Reprint of the Original 1st 2018 ed.
EUR 234,89
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 396 pages. 9.25x6.10x1.02 inches. In Stock.
Edité par Springer Nature Switzerland AG, CH, 2019
ISBN 10 : 3030074463 ISBN 13 : 9783030074463
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 205,43
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. Softcover Reprint of the Original 1st 2018 ed.
Edité par Springer International Publishing, 2019
ISBN 10 : 3030074463 ISBN 13 : 9783030074463
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a comprehensive review of imbalanced learning widely used worldwide in many real applications, such as fraud detection, disease diagnosis, etcProvides the user with the required background and software tools  needed to deal.
Edité par Springer International Publishing, 2018
ISBN 10 : 3319980734 ISBN 13 : 9783319980737
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a comprehensive review of imbalanced learning widely used worldwide in many real applications, such as fraud detection, disease diagnosis, etcProvides the user with the required background and software tools  needed to deal.