Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Texte Universitaire de l'année 2019 dans le domaine Informatique - Divers, note: Msc, University of the Witwatersrand (University), cours: Symbolic Logics, langue: Français, résumé: Nous montrons que les logiques temporelles de temps de branchement, ainsi que les logiques temporelles a temps alternatif, sont expressif dans la langue avec une seule variable propositionnelle ou avec une offre limite de variables.
EUR 27,26
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 30.
Edité par GRIN Verlag, GRIN Verlag Nov 2018, 2018
ISBN 10 : 3668833109 ISBN 13 : 9783668833104
Langue: français
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 15,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Essai de l¿année 2018 dans le domaine Philosophie - Théorique (Conscience, Science, Logique, Langage), University of the Witwatersrand (University), cours: Philosophie, langue: Français, résumé: La connaissance, contrairement au savoir fait appel a notre 'moi' ou 'je'- l¿esprit ou l¿intuition, fait appel a notre conscience ¿ Conscience de 'nous' mais aussi conscience de l¿univers qui nous entour . Lalande definit la conscience comme une connaissance plus ou moins claire qüun sujet a de son 'je'. Cette conscience, que notre connaissance stimule pour nous permettre d¿aller toujours plus loin dans la connaissance et ainsi progresser sur ce cercle vertueux qui nous conduit vers notre essence. Nos opinions naissent dans notre essence et la connaissance, quelque soit son niveau ou champ d¿investigation ¿ que ce soit : L¿individu, son rapport avec les autres ou son rapport avec l¿univers. Cette connaissance reste Incommenssurable et nous impose une implication de soit qui remet continuellement en cause nos certitudes acquises. Il nous faut juxtaposer nos reflexions et les pragmatiser. Le but d'une consultation philosophique est que l¿autre devienne plus libre. Par ailleurs, alors qüen consultation psychologique on se pose la question du transfert, en philosophie elle ne se pose pas, car la relation entre le philosophe et son interlocuteur se fait toujours par le langage (juxtapositions des mots) et les discussions profonde des grands penseurs.Books on Demand GmbH, Überseering 33, 22297 Hamburg 20 pp. Französisch.
Edité par GRIN Verlag, GRIN Verlag Feb 2019, 2019
ISBN 10 : 3668876754 ISBN 13 : 9783668876750
Langue: français
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Texte Universitaire de l¿année 2019 dans le domaine Informatique - Divers, note: Msc, University of the Witwatersrand (University), cours: Symbolic Logics, langue: Français, résumé: Nous montrons que les logiques temporelles de temps de branchement, ainsi que les logiques temporelles a temps alternatif, sont expressif dans la langue avec une seule variable propositionnelle ou avec une offre limite de variables.BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt 28 pp. Französisch.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 27,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Academic Paper from the year 2018 in the subject Computer Science - Applied, University of the Witwatersrand, course: Machine learning - Artificial Intelligence - Big Data - Natural Language Processing, language: English, abstract: Cloud computing makes it possible to build scalable machine learning systems for processing massive amounts of complex data, be them structured or unstructured, real-time or historical, the so-called Big Data. Publicly available cloud computing platforms have been made available, for instance, Amazon EC2, EMR, and Google Compute Engine. More importantly, open source APIs and libraries have also been developed for ease of programming on the cloud, for instance, Cascading, Storm, Scalding, Apache Spark and Trackur. Meanwhile, computational intelligence approaches, examples of which include evolutionary computation, immune-inspired approaches, and swarm intelligence, are also employed to develop scalable machine learning and data analytics tools.In this project, we presented the sentiment-focused web crawling problem and designed a sentiment-focused web crawler frame-work for faster discovery and retrieval of sentimental context on the Web. We have developed a computational framework to perform automated reputation analysis on the Web using Natural Language Processing and Machine Learning. This paper introduces such framework and tests its performance on automated sentiment analysis for brand reputation. In addition, we proposed different strategies for predicting the polarity scores of web pages.Experiments have shown that the performance of our proposed framework is more efficient than existing frameworks. Reputation analysis is a useful application for organizations that are looking for people's opinions about their products and services.Our approach consists of 4 parts: in the first part, the framework performed Web crawling based on the query specified by the user. In the second part, the framework locates relevant information within textual data using Entity Recognition. In the third part, relevant information was recorded in the database for feature extraction/engineering and classification. Lastly, the framework displayed the data for reputation analysis. In the training phase, we used data provided by the marketing team of the University of the Witwatersrand, Emoticons, a subset of the SentiStrength lexicon and ClueWeb09 dataset. Each domain was labelled accordingly (positive/negative and neutral) with equal numbers of polarity in plain text. In the test phase, the classifier predicted the polarity of real-time data. We used accuracy as evaluation metric to measure how much our classifier acted precisely.
EUR 35,57
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par GRIN Verlag, GRIN Verlag Jun 2018, 2018
ISBN 10 : 3668701687 ISBN 13 : 9783668701687
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 27,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Academic Paper from the year 2018 in the subject Computer Science - Applied, University of the Witwatersrand, course: Machine learning - Artificial Intelligence - Big Data - Natural Language Processing, language: English, abstract: Cloud computing makes it possible to build scalable machine learning systems for processing massive amounts of complex data, be them structured or unstructured, real-time or historical, the so-called Big Data. Publicly available cloud computing platforms have been made available, for instance, Amazon EC2, EMR, and Google Compute Engine. More importantly, open source APIs and libraries have also been developed for ease of programming on the cloud, for instance, Cascading, Storm, Scalding, Apache Spark and Trackur. Meanwhile, computational intelligence approaches, examples of which include evolutionary computation, immune-inspired approaches, and swarm intelligence, are also employed to develop scalable machine learning and data analytics tools.In this project, we presented the sentiment-focused web crawling problem and designed a sentiment-focused web crawler frame-work for faster discovery and retrieval of sentimental context on the Web. We have developed a computational framework to perform automated reputation analysis on the Web using Natural Language Processing and Machine Learning. This paper introduces such framework and tests its performance on automated sentiment analysis for brand reputation. In addition, we proposed different strategies for predicting the polarity scores of web pages.Experiments have shown that the performance of our proposed framework is more efficient than existing frameworks. Reputation analysis is a useful application for organizations that are looking for people's opinions about their products and services.Our approach consists of 4 parts: in the first part, the framework performed Web crawling based on the query specified by the user. In the second part, the framework locates relevant information within textual data using Entity Recognition. In the third part, relevant information was recorded in the database for feature extraction/engineering and classification. Lastly, the framework displayed the data for reputation analysis. In the training phase, we used data provided by the marketing team of the University of the Witwatersrand, Emoticons, a subset of the SentiStrength lexicon and ClueWeb09 dataset. Each domain was labelled accordingly (positive/negative and neutral) with equal numbers of polarity in plain text. In the test phase, the classifier predicted the polarity of real-time data. We used accuracy as evaluation metric to measure how much our classifier acted precisely.BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt 60 pp. Englisch.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 37,34
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 32,90
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 35,57
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 47,13
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 47,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Project Report from the year 2017 in the subject Computer Science - Miscellaneous, grade: BSc Honours in Computer Science, , course: Honors research project, language: English, abstract: Most universities offer a wide range of courses in which students can enrol. As a result, students may feel overwhelmed with the many possibilities and large amount of information, resulting in having a difficult time deciding what to sign up for. To this end, there is a need for a system that can assist students in this crucial process. Thus, we set out to develop a web-based recommender application that could generate a list of valuable, accurate course recommendations, taking into account a student's likelihood of succeeding academically.Choosing an effective and stimulating set of courses is not an easy task for a student. There are several factors at play when it comes to choosing courses that one must study. One of these factors may be the assumed difficulty of a course that a student is considering to take. Of course, if the course is compulsory, then the student has no choice but to enrol in it. However, in the situation in where there are many different subjects to choose from, the student may shy away from taking optional courses that might pose a significant challenge, in terms of workload or being unable to fully understand the course content. These courses would clearly have a negative effect on academic performance. However, there may also be some students who are looking to be challenged, and for whom choosing more difficult courses would be an exciting challenge. In terms of academic performance, effective course selection is of utmost importance in ensuring a student is able to succeed in her or his studies and obtain their qualification(s).
Edité par GRIN Verlag, GRIN Verlag Okt 2017, 2017
ISBN 10 : 3668554366 ISBN 13 : 9783668554368
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 47,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Project Report from the year 2017 in the subject Computer Science - Miscellaneous, grade: BSc Honours in Computer Science, , course: Honors research project, language: English, abstract: Most universities offer a wide range of courses in which students can enrol. As a result, students may feel overwhelmed with the many possibilities and large amount of information, resulting in having a difficult time deciding what to sign up for. To this end, there is a need for a system that can assist students in this crucial process. Thus, we set out to develop a web-based recommender application that could generate a list of valuable, accurate course recommendations, taking into account a student¿s likelihood of succeeding academically.Choosing an effective and stimulating set of courses is not an easy task for a student. There are several factors at play when it comes to choosing courses that one must study. One of these factors may be the assumed difficulty of a course that a student is considering to take. Of course, if the course is compulsory, then the student has no choice but to enrol in it. However, in the situation in where there are many different subjects to choose from, the student may shy away from taking optional courses that might pose a significant challenge, in terms of workload or being unable to fully understand the course content. These courses would clearly have a negative effect on academic performance. However, there may also be some students who are looking to be challenged, and for whom choosing more difficult courses would be an exciting challenge. In terms of academic performance, effective course selection is of utmost importance in ensuring a student is able to succeed in her or his studies and obtain their qualification(s).BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt 96 pp. Englisch.
Vendeur : preigu, Osnabrück, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Investigating relationships between student marks and majors taken. A descriptive and inferential statistics using SAS | Mike Nkongolo (u. a.) | Taschenbuch | 36 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668659476 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Vendeur : preigu, Osnabrück, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Demystifying Human Action Recognition in Deep Learning with Space-Time Feature Descriptors | Mike Nkongolo | Taschenbuch | 40 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668642607 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 58,68
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : preigu, Osnabrück, Allemagne
EUR 27,95
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Textual Classification for Sentiment Detection. Brand Reputation Analysis on the Web using Natural Language Processing and Machine Learning | Mike Nkongolo | Taschenbuch | 60 S. | Englisch | 2018 | GRIN Verlag | EAN 9783668701687 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Vendeur : preigu, Osnabrück, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Une expressivité sémantique de la complexité d'alternance logique avec des variables continues | Mike Nkongolo et al. | Taschenbuch | 28 S. | Französisch | 2019 | GRIN Verlag | EAN 9783668876750 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Vendeur : preigu, Osnabrück, Allemagne
EUR 47,95
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. A Web-Based Prototype Course Recommender System using Apache Mahout | Mike Nkongolo | Taschenbuch | 96 S. | Englisch | 2017 | GRIN Verlag | EAN 9783668554368 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 97,65
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 96.
Vendeur : dsmbooks, Liverpool, Royaume-Uni
EUR 158,55
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. New. SHIPS FROM MULTIPLE LOCATIONS. book.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance. 40 pp. Englisch.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Texte Universitaire de l'année 2019 dans le domaine Informatique - Divers, note: Msc, University of the Witwatersrand (University), cours: Symbolic Logics, langue: Français, résumé: Nous montrons que les logiques temporelles de temps de branchement, ainsi que les logiques temporelles a temps alternatif, sont expressif dans la langue avec une seule variable propositionnelle ou avec une offre limite de variables. 28 pp. Französisch.
Edité par GRIN Verlag, GRIN Verlag Mär 2018, 2018
ISBN 10 : 3668659478 ISBN 13 : 9783668659476
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Project Report from the year 2016 in the subject Mathematics - Statistics, grade: Bsc (Hons), , course: Data Analysis And Exploration IV, language: English, abstract: Our investigation set out to determine if there was a relationship between the number of majors a student took and their likely achievement. We cleaned the data, removing missing values and unnecessary attributes. We then transformed the data and performed statistical tests to acquire both descriptive and inferential statistics. Our investigation discovered the association between majors taken and results obtained. Students majoring only in applied maths were found to be more likely to pass than students doing a double major. In addition, students in different fields had different chances of succeeding. The University can now determine appropriate actions to take to increase its students¿ performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 36 pp. Englisch.
Edité par GRIN Verlag, GRIN Verlag Feb 2018, 2018
ISBN 10 : 3668642605 ISBN 13 : 9783668642607
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 17,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Research Paper (postgraduate) from the year 2018 in the subject Computer Science - Internet, New Technologies, , course: Machine Learning, language: English, abstract: Human Action Recognition is the task of recognizing a set of actions being performed in a video sequence. Reliably and efficiently detecting and identifying actions in video could have vast impacts in the surveillance, security, healthcare and entertainment spaces.The problem addressed in this paper is to explore different engineered spatial and temporal image and video features (and combinations thereof) for the purposes of Human Action Recognition, as well as explore different Deep Learning architectures for non-engineered features (and classification) that may be used in tandem with the handcrafted features. Further, comparisons between the different combinations of features will be made and the best, most discriminative feature set will be identified.In the paper, the development and implementation of a robust framework for Human Action Recognition was proposed. The motivation behind the proposed research is, firstly, the high effectiveness of gradient-based features as descriptors - such as HOG, HOF, and N-Jets - for video-based human action recognition. They are capable of capturing both the salient spatialand temporal information in the video sequences, while removing much of the redundant information that is not pertinent to the action. Combining these features in a hierarchical fashion further increases performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 40 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 26,97
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 30.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 28,56
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 30.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 27,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Academic Paper from the year 2018 in the subject Computer Science - Applied, University of the Witwatersrand, course: Machine learning - Artificial Intelligence - Big Data - Natural Language Processing, language: English, abstract: Cloud computing makes it possible to build scalable machine learning systems for processing massive amounts of complex data, be them structured or unstructured, real-time or historical, the so-called Big Data. Publicly available cloud computing platforms have been made available, for instance, Amazon EC2, EMR, and Google Compute Engine. More importantly, open source APIs and libraries have also been developed for ease of programming on the cloud, for instance, Cascading, Storm, Scalding, Apache Spark and Trackur. Meanwhile, computational intelligence approaches, examples of which include evolutionary computation, immune-inspired approaches, and swarm intelligence, are also employed to develop scalable machine learning and data analytics tools.In this project, we presented the sentiment-focused web crawling problem and designed a sentiment-focused web crawler frame-work for faster discovery and retrieval of sentimental context on the Web. We have developed a computational framework to perform automated reputation analysis on the Web using Natural Language Processing and Machine Learning. This paper introduces such framework and tests its performance on automated sentiment analysis for brand reputation. In addition, we proposed different strategies for predicting the polarity scores of web pages.Experiments have shown that the performance of our proposed framework is more efficient than existing frameworks. Reputation analysis is a useful application for organizations that are looking for people's opinions about their products and services.Our approach consists of 4 parts: in the first part, the framework performed Web crawling based on the query specified by the user. In the second part, the framework locates relevant information within textual data using Entity Recognition. In the third part, relevant information was recorded in the database for feature extraction/engineering and classification. Lastly, the framework displayed the data for reputation analysis. In the training phase, we used data provided by the marketing team of the University of the Witwatersrand, Emoticons, a subset of the SentiStrength lexicon and ClueWeb09 dataset. Each domain was labelled accordingly (positive/negative and neutral) with equal numbers of polarity in plain text. In the test phase, the classifier predicted the polarity of real-time data. We used accuracy as evaluation metric to measure how much our classifier acted precisely. 60 pp. Englisch.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 47,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Project Report from the year 2017 in the subject Computer Science - Miscellaneous, grade: BSc Honours in Computer Science, , course: Honors research project, language: English, abstract: Most universities offer a wide range of courses in which students can enrol. As a result, students may feel overwhelmed with the many possibilities and large amount of information, resulting in having a difficult time deciding what to sign up for. To this end, there is a need for a system that can assist students in this crucial process. Thus, we set out to develop a web-based recommender application that could generate a list of valuable, accurate course recommendations, taking into account a student's likelihood of succeeding academically.Choosing an effective and stimulating set of courses is not an easy task for a student. There are several factors at play when it comes to choosing courses that one must study. One of these factors may be the assumed difficulty of a course that a student is considering to take. Of course, if the course is compulsory, then the student has no choice but to enrol in it. However, in the situation in where there are many different subjects to choose from, the student may shy away from taking optional courses that might pose a significant challenge, in terms of workload or being unable to fully understand the course content. These courses would clearly have a negative effect on academic performance. However, there may also be some students who are looking to be challenged, and for whom choosing more difficult courses would be an exciting challenge. In terms of academic performance, effective course selection is of utmost importance in ensuring a student is able to succeed in her or his studies and obtain their qualification(s). 96 pp. Englisch.