Vendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
EUR 16
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierXII, 136 p. Hardcover. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch.
Edité par Springer Verlag, Singapore, Singapore, 2019
ISBN 10 : 9811511195 ISBN 13 : 9789811511196
Langue: anglais
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
EUR 106,01
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond. This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 102,51
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 111,41
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 126,21
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 127,37
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 132,59
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Springer Nature Singapore, Springer Nature Singapore Nov 2019, 2019
ISBN 10 : 9811511195 ISBN 13 : 9789811511196
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch.
Edité par Springer Nature Singapore, Springer Nature Singapore, 2019
ISBN 10 : 9811511195 ISBN 13 : 9789811511196
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 109,94
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 151,83
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 150 pages. 9.25x6.10x0.55 inches. In Stock.
Edité par Springer Verlag, Singapore, Singapore, 2019
ISBN 10 : 9811511195 ISBN 13 : 9789811511196
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 186,50
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond. This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par Springer Nature Singapore Nov 2019, 2019
ISBN 10 : 9811511195 ISBN 13 : 9789811511196
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond. 148 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 134,20
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Edité par Springer Nature Singapore, 2019
ISBN 10 : 9811511195 ISBN 13 : 9789811511196
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 92,27
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers new insights into how to model and exploit user demand in resource managementProvides various application examples of reinforcement learning algorithms on resource management of wireless networksPresents novel game models and associa.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 137,56
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.