Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 53,82
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 178,80
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 170,02
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 170,01
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 192,34
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 187,68
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 209,87
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 232,10
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. 2023rd edition NO-PA16APR2015-KAP.
Edité par Springer Nature Switzerland, 2024
ISBN 10 : 303099774X ISBN 13 : 9783030997748
Langue: anglais
Vendeur : preigu, Osnabrück, Allemagne
EUR 159,25
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Adversarial Machine Learning | Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence | Aneesh Sreevallabh Chivukula (u. a.) | Taschenbuch | xix | Englisch | 2024 | Springer Nature Switzerland | EAN 9783030997748 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Edité par Springer International Publishing, 2024
ISBN 10 : 303099774X ISBN 13 : 9783030997748
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
Edité par Springer International Publishing, 2023
ISBN 10 : 3030997715 ISBN 13 : 9783030997717
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 181,89
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.
Vendeur : PAPER CAVALIER UK, London, Royaume-Uni
EUR 260,45
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : new. New!
Edité par Springer-Nature New York Inc, 2023
ISBN 10 : 3030997715 ISBN 13 : 9783030997717
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 275,11
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 321 pages. 9.25x6.10x9.21 inches. In Stock.
Edité par Springer-Nature New York Inc, 2023
ISBN 10 : 3030997715 ISBN 13 : 9783030997717
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 176,94
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 321 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand.
Edité par Springer International Publishing, 2023
ISBN 10 : 3030997715 ISBN 13 : 9783030997717
Langue: anglais
Vendeur : preigu, Osnabrück, Allemagne
EUR 159,25
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierBuch. Etat : Neu. Adversarial Machine Learning | Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence | Aneesh Sreevallabh Chivukula (u. a.) | Buch | xix | Englisch | 2023 | Springer International Publishing | EAN 9783030997717 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 245,45
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 248,70
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.