Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis
EUR 71,13
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 85,45
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Cambridge University Press 2010-02-04, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 85,36
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPaperback. Etat : New.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 89,36
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 73,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Edité par Cambridge University Press, Cambridge, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 94,16
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 123,15
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 79,24
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, Cambridge, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 118,35
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par Cambridge University Press, Cambridge, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
EUR 96,14
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 162,29
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 189,48
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 214,57
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 225,58
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, Cambridge, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 217,51
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organizes and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localization, Jacobson radical, chain conditions, Dedekind domains, semisimple rings, exterior algebras), the author makes algebraic K-theory accessible to first year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs. This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here. The reader will not only learn algebraic K-theory, but also Dedekind domains, class groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion, tensor algebras, symmetric algebras, exterior algebras, central simple algebras, and Brauer groups. The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has successfuly used this text to teach algebra to first year graduate students. Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par Cambridge University Press, Cambridge, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 233,35
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organizes and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localization, Jacobson radical, chain conditions, Dedekind domains, semisimple rings, exterior algebras), the author makes algebraic K-theory accessible to first year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs. This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here. The reader will not only learn algebraic K-theory, but also Dedekind domains, class groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion, tensor algebras, symmetric algebras, exterior algebras, central simple algebras, and Brauer groups. The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has successfuly used this text to teach algebra to first year graduate students. Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 200,66
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press CUP, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 284,55
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 692.
Edité par Cambridge University Press, Cambridge, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
EUR 238,52
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organizes and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localization, Jacobson radical, chain conditions, Dedekind domains, semisimple rings, exterior algebras), the author makes algebraic K-theory accessible to first year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs. This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here. The reader will not only learn algebraic K-theory, but also Dedekind domains, class groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion, tensor algebras, symmetric algebras, exterior algebras, central simple algebras, and Brauer groups. The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has successfuly used this text to teach algebra to first year graduate students. Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 290,81
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is both an introduction to K-theory and a text in algebra. These two roles are entirely compatible. On the one hand, nothing more than the basic algebra of groups, rings, and modules is needed to explain the clasical algebraic K-theory. On the other hand, K-theory is a natural organizing principle for the standard topics of a second course in algebra, and these topics are presented carefully here. The reader will not only learn algebraic K-theory, but also Dedekind domains, class groups, semisimple rings, character theory, quadratic forms, tensor products, localization, completion, tensor algebras, symmetric algebras, exterior algebras, central simple algebras, and Brauer groups. The presentation is self-contained, with all the necessary background and proofs, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. The prerequisites are minimal: just a first semester of algebra (including Galois theory and modules over a principal ideal domain). No experience with homological algebra, analysis, geometry, number theory, or topology is assumed. The author has successfuly used this text to teach algebra to first year graduate students. Selected topics can be used to construct a variety of one-semester courses; coverage of the entire text requires a full year.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 302,44
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 676 pages. 9.50x6.75x1.50 inches. In Stock.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 89,67
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 1st edition. 690 pages. 9.00x6.25x1.50 inches. In Stock. This item is printed on demand.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 93,50
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 980.
Edité par Cambridge University Press, 2009
ISBN 10 : 0521106583 ISBN 13 : 9780521106580
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 92,63
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 232,52
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 676 pages. 9.50x6.75x1.50 inches. In Stock. This item is printed on demand.
Edité par Cambridge University Press, 2009
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 230,48
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 298,71
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 692 Illus.
Edité par Cambridge University Press, 2002
ISBN 10 : 0521800781 ISBN 13 : 9780521800785
Langue: anglais
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 312,06
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 692.