Vendeur : Dream Books Co., Denver, CO, Etats-Unis
EUR 33,76
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : acceptable. This copy has clearly been enjoyedâ"expect noticeable shelf wear and some minor creases to the cover. Binding is strong, and all pages are legible. May contain previous library markings or stamps.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 43,95
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Packt Publishing 1/31/2024, 2024
ISBN 10 : 1805127160 ISBN 13 : 9781805127161
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 46,30
Quantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Bayesian Analysis with Python - Third Edition: A practical guide to probabilistic modeling. Book.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 48,72
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 49,76
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 49,53
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 49,52
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 64,97
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 67,32
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 69,91
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 55,58
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 67,10
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 67,08
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 81,86
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. 3rd edition NO-PA16APR2015-KAP.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 75,68
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 73,77
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. New. book.
Edité par Packt Publishing Limited, 2024
ISBN 10 : 1805127160 ISBN 13 : 9781805127161
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 57,11
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 85,25
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 85,59
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Vendeur : preigu, Osnabrück, Allemagne
EUR 64,55
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Bayesian Analysis with Python - Third Edition | A practical guide to probabilistic modeling | Osvaldo Martin | Taschenbuch | Englisch | 2024 | Packt Publishing | EAN 9781805127161 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 71,97
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these librariesKey Features Conduct Bayesian data analysis with step-by-step guidance Gain insight into a modern, practical, and computational approach to Bayesian statistical modeling Enhance your learning with best practices through sample problems and practice exercises Purchase of the print or Kindle book includes a free PDF Elektronisches Buch.Book DescriptionThe third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.What you will learn Build probabilistic models using PyMC and Bambi Analyze and interpret probabilistic models with ArviZ Acquire the skills to sanity-check models and modify them if necessary Build better models with prior and posterior predictive checks Learn the advantages and caveats of hierarchical models Compare models and choose between alternative ones Interpret results and apply your knowledge to real-world problems Explore common models from a unified probabilistic perspective Apply the Bayesian framework's flexibility for probabilistic thinkingWho this book is forIf you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.Table of Contents Thinking Probabilistically Programming Probabilistically Hierarchical Models Modeling with Lines Comparing Models Modeling with Bambi Mixture Models Gaussian Processes Bayesian Additive Regression Trees Inference Engines Where to Go Next.
Vendeur : preigu, Osnabrück, Allemagne
EUR 81,60
Quantité disponible : 5 disponible(s)
Ajouter au panierBuch. Etat : Neu. Bayesian Analysis with Python - Third Edition | A practical guide to probabilistic modeling | Osvaldo Martin | Buch | Englisch | 2024 | Packt Publishing | EAN 9781836644835 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 96,14
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these librariesKey Features:Conduct Bayesian data analysis with step-by-step guidanceGain insight into a modern, practical, and computational approach to Bayesian statistical modelingEnhance your learning with best practices through sample problems and practice exercisesPurchase of the print or Kindle book includes a free PDF Elektronisches Buch.Book Description:The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.What You Will Learn:Build probabilistic models using PyMC and BambiAnalyze and interpret probabilistic models with ArviZAcquire the skills to sanity-check models and modify them if necessaryBuild better models with prior and posterior predictive checksLearn the advantages and caveats of hierarchical modelsCompare models and choose between alternative onesInterpret results and apply your knowledge to real-world problemsExplore common models from a unified probabilistic perspectiveApply the Bayesian framework's flexibility for probabilistic thinkingWho this book is for:If you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.Table of Contents.