Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 46,99
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Packt Publishing 1/31/2024, 2024
ISBN 10 : 1805127160 ISBN 13 : 9781805127161
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 49,41
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Bayesian Analysis with Python - Third Edition: A practical guide to probabilistic modeling 1.49. Book.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 53,35
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Russell Books, Victoria, BC, Canada
EUR 54,70
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierpaperback. Etat : New. 3rd ed. Special order direct from the distributor.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 66,88
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 69,30
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 52,74
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 57,48
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 74,23
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 71,64
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 84,58
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 71,63
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 78,27
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 87,22
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. New. book.
Vendeur : dsmbooks, Liverpool, Royaume-Uni
EUR 172
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierhardcover. Etat : New. New. book.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 56,67
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 54,22
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 72,67
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierHRD. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 87,77
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 100,84
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierHRD. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 87,71
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 70,84
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these librariesKey Features Conduct Bayesian data analysis with step-by-step guidance Gain insight into a modern, practical, and computational approach to Bayesian statistical modeling Enhance your learning with best practices through sample problems and practice exercises Purchase of the print or Kindle book includes a free PDF Elektronisches Buch.Book DescriptionThe third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.What you will learn Build probabilistic models using PyMC and Bambi Analyze and interpret probabilistic models with ArviZ Acquire the skills to sanity-check models and modify them if necessary Build better models with prior and posterior predictive checks Learn the advantages and caveats of hierarchical models Compare models and choose between alternative ones Interpret results and apply your knowledge to real-world problems Explore common models from a unified probabilistic perspective Apply the Bayesian framework's flexibility for probabilistic thinkingWho this book is forIf you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.Table of Contents Thinking Probabilistically Programming Probabilistically Hierarchical Models Modeling with Lines Comparing Models Modeling with Bambi Mixture Models Gaussian Processes Bayesian Additive Regression Trees Inference Engines Where to Go Next.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 96,14
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these librariesKey Features:Conduct Bayesian data analysis with step-by-step guidanceGain insight into a modern, practical, and computational approach to Bayesian statistical modelingEnhance your learning with best practices through sample problems and practice exercisesPurchase of the print or Kindle book includes a free PDF Elektronisches Buch.Book Description:The third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.What You Will Learn:Build probabilistic models using PyMC and BambiAnalyze and interpret probabilistic models with ArviZAcquire the skills to sanity-check models and modify them if necessaryBuild better models with prior and posterior predictive checksLearn the advantages and caveats of hierarchical modelsCompare models and choose between alternative onesInterpret results and apply your knowledge to real-world problemsExplore common models from a unified probabilistic perspectiveApply the Bayesian framework's flexibility for probabilistic thinkingWho this book is for:If you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.Table of Contents.