Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 51,17
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 52,33
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 54,74
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Packt Publishing 5/31/2023, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 64,75
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more. Book.
Vendeur : Russell Books, Victoria, BC, Canada
EUR 59,11
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierpaperback. Etat : New. Special order direct from the distributor.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 57,04
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 70,73
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 57,03
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 62,06
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 63,50
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 58
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 71,12
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Edité par Packt Publishing Limited, 2023
ISBN 10 : 1804612987 ISBN 13 : 9781804612989
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 69,64
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 72,22
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 58,27
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental dataPurchase of the print or Kindle book includes a free PDF Elektronisches BuchKey Features Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more Discover modern causal inference techniques for average and heterogenous treatment effect estimation Explore and leverage traditional and modern causal discovery methodsBook DescriptionCausal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.You'll start with basic motivations behind causal thinking and a comprehensive introduction to Pearlian causal concepts, such as structural causal models, interventions, counterfactuals, and more. Each concept is accompanied by a theoretical explanation and a set of practical exercises with Python code. Next, you'll dive into the world of causal effect estimation, consistently progressing towards modern machine learning methods. Step-by-step, you'll discover Python causal ecosystem and harness the power of cutting-edge algorithms. You'll further explore the mechanics of how 'causes leave traces' and compare the main families of causal discovery algorithms. The final chapter gives you a broad outlook into the future of causal AI where we examine challenges and opportunities and provide you with a comprehensive list of resources to learn more.By the end of this book, you will be able to build your own models for causal inference and discovery using statistical and machine learning techniques as well as perform basic project assessment.What you will learn Master the fundamental concepts of causal inference Decipher the mysteries of structural causal models Unleash the power of the 4-step causal inference process in Python Explore advanced uplift modeling techniques Unlock the secrets of modern causal discovery using Python Use causal inference for social impact and community benefitWho this book is forThis book is for machine learning engineers, researchers, and data scientists looking to extend their toolkit and explore causal machine learning. It will also help people who've worked with causality using other programming languages and now want to switch to Python, those who worked with traditional causal inference and want to learn about causal machine learning, and tech-savvy entrepreneurs who want to go beyond the limitations of traditional ML. You are expected to have basic knowledge of Python and Python scientific libraries along with knowledge of basic probability and statistics.Table of Contents Causality - Hey, We Have Machine Learning, So Why Even Bother Judea Pearl and the Ladder of Causation Regression, Observations, and Interventions Graphical Models Forks, Chains, and Immoralities Nodes, Edges, and Statistical (In)dependence The Four-Step Process of Causal Inference Causal Models - Assumptions and Challenges Causal Inference and Machine Learning - from Matching to Meta- Learners Causal Inference and Machine Learning - Advanced Estimators, Experiments, Evaluations, and More Causal Inference and Machine Learning - Deep Learning, NLP, and Beyond Can I Have a Causal Graph, Please (N.B. Please use the Read Sample option to see further chapters).