EUR 46,51
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 176.
EUR 43,69
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 176.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 45,48
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 176.
Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 60,56
Quantité disponible : 1 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Langue: anglais
Edité par Springer International Publishing, Springer Nature Switzerland Nov 2023, 2023
ISBN 10 : 3031423321 ISBN 13 : 9783031423321
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 48,14
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods ¿ and at a lower computational cost.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch.
Langue: anglais
Edité par Springer International Publishing, 2023
ISBN 10 : 3031423321 ISBN 13 : 9783031423321
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 48,14
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader - more specifically, researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing.The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.
EUR 15,01
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods ¿ and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader ¿ more specifically, researchers of more traditional areas of mathematical modeling ¿ about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing. The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches.
Langue: anglais
Edité par Berlin Springer International Publishing Springer Nov 2023, 2023
ISBN 10 : 3031423321 ISBN 13 : 9783031423321
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 48,14
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an introduction to the use of machine learning and data-driven approaches in fluid simulation and animation, as an alternative to traditional modeling techniques based on partial differential equations and numerical methods - and at a lower computational cost.This work starts with a brief review of computability theory, aimed to convince the reader - more specifically, researchers of more traditional areas of mathematical modeling - about the power of neural computing in fluid animations. In these initial chapters, fluid modeling through Navier-Stokes equations and numerical methods are also discussed.The following chapters explore the advantages of the neural networks approach and show the building blocks of neural networks for fluid simulation. They cover aspects related to training data, data augmentation, and testing.The volume completes with two case studies, one involving Lagrangian simulation of fluids using convolutional neural networks and the other using Generative Adversarial Networks (GANs) approaches. 164 pp. Englisch.
Langue: anglais
Edité par Springer International Publishing, 2023
ISBN 10 : 3031423321 ISBN 13 : 9783031423321
Vendeur : moluna, Greven, Allemagne
EUR 43,98
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Discloses the use of machine learning in fluid simulation as an option of lower computational costOffers a comparison between two neural network approaches and corresponding modelsIntended for students and researchers who need to keep pace .
Vendeur : preigu, Osnabrück, Allemagne
EUR 45,80
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Deep Learning for Fluid Simulation and Animation | Fundamentals, Modeling, and Case Studies | Gilson Antonio Giraldi (u. a.) | Taschenbuch | xii | Englisch | 2023 | Springer | EAN 9783031423321 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.