EUR 21,19
Quantité disponible : 15 disponible(s)
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. Established seller since 2000.
EUR 22,70
Quantité disponible : 15 disponible(s)
Ajouter au panierHRD. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 20,34
Quantité disponible : 15 disponible(s)
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 26,13
Quantité disponible : 15 disponible(s)
Ajouter au panierHRD. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : Forgotten Books, London, Royaume-Uni
EUR 15,32
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. Print on Demand. This book investigates the depth of random graphs, a topic with important applications in computer science. The author introduces the concept of graph depth and provides a comprehensive analysis of the average and maximum depth of random graphs. The book presents new results on the depth of sparse and dense random graphs, providing valuable insights into the structure and connectivity of these graphs. The author also explores the relationship between the depth of a random graph and the probability of finding paths of a given length. By applying advanced mathematical techniques, the author provides a rigorous treatment of the subject, making this book an essential reference for researchers and practitioners working with random graphs. This book is a reproduction of an important historical work, digitally reconstructed using state-of-the-art technology to preserve the original format. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in the book. print-on-demand item.
EUR 30,89
Quantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. KlappentextrnrnExcerpt from On the Depth of a Random GraphVariable whose values are graphs (digraphs) on the vertex set If e {u,v} (resp. E and u,v E u v, then Prob {e is an edge} p and these probabilities are independent for different e.