Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 45,79
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship toPOboxaddress.
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
EUR 94,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 111,98
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship toPOboxaddress.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 111,50
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Springer Berlin Heidelberg, 2010
ISBN 10 : 3642098614 ISBN 13 : 9783642098611
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.
Edité par Springer Berlin Heidelberg, 2008
ISBN 10 : 354079865X ISBN 13 : 9783540798651
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 94,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 94,95
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Edité par Springer Berlin Heidelberg, Springer Berlin Heidelberg Mai 2008, 2008
ISBN 10 : 354079865X ISBN 13 : 9783540798651
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition ¿ derived from machine learning ¿ of ¿a good set of cl- si ers¿, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of ¿good set of classi ers¿ (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.
EUR 141,38
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 284.
Edité par Springer Berlin Heidelberg, 2008
ISBN 10 : 3642098614 ISBN 13 : 9783642098611
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 148,80
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 268 pages. 9.00x6.00x0.64 inches. In Stock.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 101,02
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 101,02
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 164,82
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 162,29
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Edité par Springer Berlin Heidelberg, 2010
ISBN 10 : 3642098614 ISBN 13 : 9783642098611
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 92,27
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Latest research in the area of Learning Classifier SystemsPresents a probabilistic approach to Design and Analysis of Learning Classifier SystemsThis book is probably best summarized as providing a principled foundation for Learning Classi.
Edité par Springer Berlin Heidelberg, 2008
ISBN 10 : 354079865X ISBN 13 : 9783540798651
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 92,27
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Latest research in the area of Learning Classifier SystemsPresents a probabilistic approach to Design and Analysis of Learning Classifier SystemsThis book is probably best summarized as providing a principled foundation for Learning Classi.
Edité par Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10 : 3642098614 ISBN 13 : 9783642098611
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS. 284 pp. Englisch.
Edité par Springer Berlin Heidelberg Mai 2008, 2008
ISBN 10 : 354079865X ISBN 13 : 9783540798651
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS. 284 pp. Englisch.
Edité par Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2010, 2010
ISBN 10 : 3642098614 ISBN 13 : 9783642098611
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition ¿ derived from machine learning ¿ of ¿a good set of cl- si ers¿, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of ¿good set of classi ers¿ (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 147,51
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 284 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 153,71
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 284.