Langue: anglais
Edité par Springer Verlag, Singapore, Singapore, 2022
ISBN 10 : 981163419X ISBN 13 : 9789811634192
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
EUR 138,45
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 134,95
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 143,30
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 137,92
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 141,10
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 157,07
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 146,98
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 146,98
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 145,70
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 165,82
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 166,97
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 189,35
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. 1st ed. 2022 edition NO-PA16APR2015-KAP.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 193,58
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Langue: anglais
Edité par Springer Verlag, Singapore, SG, 2022
ISBN 10 : 981163419X ISBN 13 : 9789811634192
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 208,81
Quantité disponible : Plus de 20 disponibles
Ajouter au panierHardback. Etat : New. 2021 ed. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Langue: anglais
Edité par Springer Nature Singapore, Springer Nature Singapore Feb 2022, 2022
ISBN 10 : 981163419X ISBN 13 : 9789811634192
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 165,03
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Langue: anglais
Edité par Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10 : 981163422X ISBN 13 : 9789811634222
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 165,03
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 228,31
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 180 pages. 9.25x6.10x0.39 inches. In Stock.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 230,22
Quantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 180 pages. 9.25x6.10x0.50 inches. In Stock.
Langue: anglais
Edité par Springer Verlag, Singapore, Singapore, 2022
ISBN 10 : 981163419X ISBN 13 : 9789811634192
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 215,01
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Langue: anglais
Edité par Springer Verlag, Singapore, SG, 2022
ISBN 10 : 981163419X ISBN 13 : 9789811634192
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 198,02
Quantité disponible : Plus de 20 disponibles
Ajouter au panierHardback. Etat : New. 2021 ed. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.
Langue: anglais
Edité par Springer Nature Singapore Feb 2023, 2023
ISBN 10 : 981163422X ISBN 13 : 9789811634222
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. 184 pp. Englisch.
Langue: anglais
Edité par Springer Nature Singapore Feb 2022, 2022
ISBN 10 : 981163419X ISBN 13 : 9789811634192
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management. 184 pp. Englisch.
Langue: anglais
Edité par Springer, Berlin|Springer Nature Singapore|Springer, 2021
ISBN 10 : 981163419X ISBN 13 : 9789811634192
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, imp.
Langue: anglais
Edité par Springer, Berlin|Springer Nature Singapore|Springer, 2023
ISBN 10 : 981163422X ISBN 13 : 9789811634222
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, imp.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 197,64
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : preigu, Osnabrück, Allemagne
EUR 141,20
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Distributed Machine Learning and Gradient Optimization | Jiawei Jiang (u. a.) | Taschenbuch | xi | Englisch | 2023 | Springer | EAN 9789811634222 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 201,67
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Langue: anglais
Edité par Springer Nature Singapore, Springer Nature Singapore Feb 2023, 2023
ISBN 10 : 981163422X ISBN 13 : 9789811634222
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 160,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch.