Vendeur : Greenway, Chattanooga, TN, Etats-Unis
EUR 26,51
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Very good condition. very clean,fast ship.
Vendeur : Jadewalky Book Company, HANOVER PARK, IL, Etats-Unis
EUR 38,77
Quantité disponible : 3 disponible(s)
Ajouter au panierEtat : Used - Very Good. Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 40,50
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Langue: anglais
Edité par O'Reilly Media 7/5/2022, 2022
ISBN 10 : 1098102932 ISBN 13 : 9781098102937
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 42,84
Quantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Essential Math for Data Science: Take Control of Your Data with Fundamental Linear Algebra, Probability, and Statistics. Book.
Vendeur : Lakeside Books, Benton Harbor, MI, Etats-Unis
EUR 39,49
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
EUR 45,20
Quantité disponible : 15 disponible(s)
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 42,44
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 44,05
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 42,33
Quantité disponible : 15 disponible(s)
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 48,47
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
EUR 49,28
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks.
Edité par O'Reilly Media
Vendeur : Academic Book Solutions, Medford, NY, Etats-Unis
EUR 29,95
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : LikeNew. Used Like New, no missing pages, no damage to binding, may have a remainder mark.
Langue: anglais
Edité par O'Reilly Media, Sebastopol, 2022
ISBN 10 : 1098102932 ISBN 13 : 9781098102937
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
EUR 51,61
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 59,54
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 42,32
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 48,47
Quantité disponible : 5 disponible(s)
Ajouter au panierEtat : New. In.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 56,79
Quantité disponible : 3 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 46,41
Quantité disponible : 5 disponible(s)
Ajouter au panierpaperback. Etat : New.
Vendeur : GoldBooks, Denver, CO, Etats-Unis
EUR 62,20
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : new.
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 53,63
Quantité disponible : 5 disponible(s)
Ajouter au panierEtat : New. 2022. Paperback. . . . . .
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 50,23
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 70,13
Quantité disponible : 3 disponible(s)
Ajouter au panierEtat : New. 1st edition NO-PA16APR2015-KAP.
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 66,27
Quantité disponible : 5 disponible(s)
Ajouter au panierEtat : New. 2022. Paperback. . . . . . Books ship from the US and Ireland.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 66,92
Quantité disponible : 3 disponible(s)
Ajouter au panierEtat : New.
Langue: anglais
Edité par Oreilly & Associates Inc, 2022
ISBN 10 : 1098102932 ISBN 13 : 9781098102937
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 65,04
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 350 pages. 9.19x7.00x0.73 inches. In Stock.
Langue: anglais
Edité par O'reilly Media Jun 2022, 2022
ISBN 10 : 1098102932 ISBN 13 : 9781098102937
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 65,50
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. 333 pp. Englisch.
Langue: anglais
Edité par O'reilly Media Jun 2022, 2022
ISBN 10 : 1098102932 ISBN 13 : 9781098102937
Vendeur : Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Allemagne
EUR 65,50
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. 333 pp. Englisch.
EUR 43,55
Quantité disponible : 5 disponible(s)
Ajouter au panierEtat : NEW.
Langue: anglais
Edité par O'reilly Media Jun 2022, 2022
ISBN 10 : 1098102932 ISBN 13 : 9781098102937
Vendeur : Wegmann1855, Zwiesel, Allemagne
EUR 65,50
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.
EUR 51,27
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. To succeed in data science you need some math proficiency. But not just any math. This common-sense guide provides a clear, plain English survey of the math you'll need in data science, including probability, statistics, hypothesis testing, linear algebra, machine learning, and calculus.Practical examples with Python code will help you see how the math applies to the work you'll be doing, providing a clear understanding of how concepts work under the hood while connecting them to applications like machine learning. You'll get a solid foundation in the math essential for data science, but more importantly, you'll be able to use it to:Recognize the nuances and pitfalls of probability mathMaster statistics and hypothesis testing (and avoid common pitfalls)Discover practical applications of probability, statistics, calculus, and machine learningIntuitively understand linear algebra as a transformation of space, not just grids of numbers being multiplied and addedPerform calculus derivatives and integrals completely from scratch in PythonApply what you've learned to machine learning, including linear regression, logistic regression, and neural networks.