Edité par Springer, 2004
Langue: anglais
Vendeur : Antiquariat Thomas Haker GmbH & Co. KG, Berlin, Allemagne
Membre d'association : GIAQ
EUR 7,20
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Wie neu. 402 S., Like new. Shrink wrapped. Sprache: Englisch Gewicht in Gramm: 980.
Vendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
EUR 26,36
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : Good. 402 pp., Hardcover, ex library, light age toning to edges, else text and binding clean and tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 166,17
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 166,17
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 166,41
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dualheuristics).
Edité par Springer US, Springer US, 1999
ISBN 10 : 0792359240 ISBN 13 : 9780792359241
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 170,64
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dualheuristics).
EUR 178,14
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. The material presented in this supplement to the 3-volume Handbook of Combinatorial Optimization will be useful for any researcher who uses combinatorial optimization methods to solve problemsThe material presented in this supplement to the 3-volume .
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 157,49
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 157,68
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 233
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. supplement edition. 408 pages. 9.61x6.61x1.97 inches. In Stock.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 237,01
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. supplement edition. 656 pages. 9.25x6.25x1.49 inches. In Stock.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 227,97
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Like New. Like New. book.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 236,32
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 166,17
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 164,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computer science, and applied ma- ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, a- line crew scheduling, corporate planning, computer-aided design and m- ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, allo- tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discov- ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These al- rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In ad- tion, linear programming relaxations are often the basis for many appro- mation algorithms for solving NP-hard problems (e.g. dual heuristics).
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 156,84
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 157,49
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 228,23
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 247,94
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware - This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set, as well as the Supplement Volume A. It can also be regarded as a stand-alone volume which presents chapters dealing with various aspects of the subject, including optimization problems and algorithmic approaches for discrete problems.