Vendeur : Patrico Books, Apollo Beach, FL, Etats-Unis
EUR 11,95
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Very Good. Ships Out Tomorrow!
Vendeur : Goodbooks Company, Springdale, AR, Etats-Unis
EUR 31,76
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : good. Has a sturdy binding with some shelf wear. May have some markings or highlighting. Used copies may not include access codes or Cd's. Slight bending may be present.
Vendeur : GoldBooks, Denver, CO, Etats-Unis
EUR 42,35
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : new.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 47,14
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 53,56
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 52,40
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Langue: anglais
Edité par Packt Publishing 2020-07-31, 2020
ISBN 10 : 1800208138 ISBN 13 : 9781800208131
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 50,60
Quantité disponible : 10 disponible(s)
Ajouter au panierPaperback. Etat : New.
Langue: anglais
Edité par Packt Publishing, Limited, 2020
ISBN 10 : 1800208138 ISBN 13 : 9781800208131
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 61,65
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 454.
Langue: anglais
Edité par Packt Publishing Limited, 2020
ISBN 10 : 1800208138 ISBN 13 : 9781800208131
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 61,98
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Vendeur : preigu, Osnabrück, Allemagne
EUR 66,45
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Hands-On Explainable AI (XAI) with Python | Interpret, visualize, explain, and integrate reliable AI for fair, secure, and trustworthy AI apps | Denis Rothman | Taschenbuch | Englisch | 2020 | Packt Publishing | EAN 9781800208131 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 75,28
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Resolve the black box models in your AI applications to make them fair, trustworthy, and secure. Familiarize yourself with the basic principles and tools to deploy Explainable AI (XAI) into your apps and reporting interfaces.Key FeaturesLearn explainable AI tools and techniques to process trustworthy AI resultsUnderstand how to detect, handle, and avoid common issues with AI ethics and biasIntegrate fair AI into popular apps and reporting tools to deliver business value using Python and associated toolsBook DescriptionEffectively translating AI insights to business stakeholders requires careful planning, design, and visualization choices. Describing the problem, the model, and the relationships among variables and their findings are often subtle, surprising, and technically complex.Hands-On Explainable AI (XAI) with Python will see you work with specific hands-on machine learning Python projects that are strategically arranged to enhance your grasp on AI results analysis. You will be building models, interpreting results with visualizations, and integrating XAI reporting tools and different applications.You will build XAI solutions in Python, TensorFlow 2, Google Cloud's XAI platform, Google Colaboratory, and other frameworks to open up the black box of machine learning models. The book will introduce you to several open-source XAI tools for Python that can be used throughout the machine learning project life cycle.You will learn how to explore machine learning model results, review key influencing variables and variable relationships, detect and handle bias and ethics issues, and integrate predictions using Python along with supporting the visualization of machine learning models into user explainable interfaces.By the end of this AI book, you will possess an in-depth understanding of the core concepts of XAI.What you will learnPlan for XAI through the different stages of the machine learning life cycleEstimate the strengths and weaknesses of popular open-source XAI applicationsExamine how to detect and handle bias issues in machine learning dataReview ethics considerations and tools to address common problems in machine learning dataShare XAI design and visualization best practicesIntegrate explainable AI results using Python modelsUse XAI toolkits for Python in machine learning life cycles to solve business problemsWho this book is forThis book is not an introduction to Python programming or machine learning concepts. You must have some foundational knowledge and/or experience with machine learning libraries such as scikit-learn to make the most out of this book.Some of the potential readers of this book include:Professionals who already use Python for as data science, machine learning, research, and analysisData analysts and data scientists who want an introduction into explainable AI tools and techniquesAI Project managers who must face the contractual and legal obligations of AI Explainability for the acceptance phase of their applications.