Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 46,85
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 45,85
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Packt Publishing 7/29/2022, 2022
ISBN 10 : 180323587X ISBN 13 : 9781803235875
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 45,10
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Hyperparameter Tuning with Python: Boost your machine learning model's performance via hyperparameter tuning 1.16. Book.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 41,62
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 46,84
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 48,63
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 51,14
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 40,44
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 83,29
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. New. book.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
EUR 34,05
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Edité par Packt Publishing Limited, 2022
ISBN 10 : 180323587X ISBN 13 : 9781803235875
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 51,69
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 66,79
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Take your machine learning models to the next level by learning how to leverage hyperparameter tuning, allowing you to control the model's finest details Key Features:Gain a deep understanding of how hyperparameter tuning works Explore exhaustive search, heuristic search, and Bayesian and multi-fidelity optimization methods Learn which method should be used to solve a specific situation or problem Book Description: Hyperparameters are an important element in building useful machine learning models. This book curates numerous hyperparameter tuning methods for Python, one of the most popular coding languages for machine learning. Alongside in-depth explanations of how each method works, you will use a decision map that can help you identify the best tuning method for your requirements. You'll start with an introduction to hyperparameter tuning and understand why it's important. Next, you'll learn the best methods for hyperparameter tuning for a variety of use cases and specific algorithm types. This book will not only cover the usual grid or random search but also other powerful underdog methods. Individual chapters are also dedicated to the three main groups of hyperparameter tuning methods: exhaustive search, heuristic search, Bayesian optimization, and multi-fidelity optimization. Later, you will learn about top frameworks like Scikit, Hyperopt, Optuna, NNI, and DEAP to implement hyperparameter tuning. Finally, you will cover hyperparameters of popular algorithms and best practices that will help you efficiently tune your hyperparameter. By the end of this book, you will have the skills you need to take full control over your machine learning models and get the best models for the best results. What You Will Learn:Discover hyperparameter space and types of hyperparameter distributions Explore manual, grid, and random search, and the pros and cons of each Understand powerful underdog methods along with best practices Explore the hyperparameters of popular algorithms Discover how to tune hyperparameters in different frameworks and libraries Deep dive into top frameworks such as Scikit, Hyperopt, Optuna, NNI, and DEAP Get to grips with best practices that you can apply to your machine learning models right away Who this book is for: This book is for data scientists and ML engineers who are working with Python and want to further boost their ML model's performance by using the appropriate hyperparameter tuning method. Although a basic understanding of machine learning and how to code in Python is needed, no prior knowledge of hyperparameter tuning in Python is required.