Edité par LAP LAMBERT Academic Publishing, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 60,34
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Edité par LAP LAMBERT Academic Publishing Jun 2023, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 43,90
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -This book summarizes the research suggests a novel method that significantly enhances higher-order statistical algorithms for blind digital modulation identification (DMI) (HOS). In order to perform an offset on higher-order moments (HOM) and obtain an estimate of noise-free HOM, the suggested method makes use of noise power estimation. The suggested method will perform previous DMI algorithms that are based only on cumulants or do not take into account HOM denoising when tested for multiple antenna systems, even for a receiver with impairments. The improvement will be made while maintaining the same level of HOS-based DMI complexity in the same situation. Modulation identification is the step that succeeds energy detection and precedes signal demodulation. When both source signals and channel parameters are unknown, we are in a blind context that naturally requires a blind process of modulation recognition. Despite their high identification accuracy, maximum-likelihood- based techniques for modulation identification often suffer from the substantially high complexity. Feature-based algorithms of modulation identification give an alternative that provides a good performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 60 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : preigu, Osnabrück, Allemagne
EUR 40
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Identification of Blind Digital Modulation in Multiple-Antenna Systems | M. Aravind Kumar | Taschenbuch | Englisch | 2023 | LAP LAMBERT Academic Publishing | EAN 9786206180746 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Edité par LAP LAMBERT Academic Publishing Jun 2023, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 43,90
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book summarizes the research suggests a novel method that significantly enhances higher-order statistical algorithms for blind digital modulation identification (DMI) (HOS). In order to perform an offset on higher-order moments (HOM) and obtain an estimate of noise-free HOM, the suggested method makes use of noise power estimation. The suggested method will perform previous DMI algorithms that are based only on cumulants or do not take into account HOM denoising when tested for multiple antenna systems, even for a receiver with impairments. The improvement will be made while maintaining the same level of HOS-based DMI complexity in the same situation. Modulation identification is the step that succeeds energy detection and precedes signal demodulation. When both source signals and channel parameters are unknown, we are in a blind context that naturally requires a blind process of modulation recognition. Despite their high identification accuracy, maximum-likelihood- based techniques for modulation identification often suffer from the substantially high complexity. Feature-based algorithms of modulation identification give an alternative that provides a good performance. 60 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 61,87
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Edité par LAP LAMBERT Academic Publishing, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 62,96
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Edité par LAP Lambert Academic Publishing, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 37,23
Quantité disponible : Plus de 20 disponibles
Ajouter au panierKartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book summarizes the research suggests a novel method that significantly enhances higher-order statistical algorithms for blind digital modulation identification (DMI) (HOS). In order to perform an offset on higher-order moments (HOM) and obtain an esti.
Edité par LAP LAMBERT Academic Publishing, 2023
ISBN 10 : 6206180743 ISBN 13 : 9786206180746
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 44,59
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book summarizes the research suggests a novel method that significantly enhances higher-order statistical algorithms for blind digital modulation identification (DMI) (HOS). In order to perform an offset on higher-order moments (HOM) and obtain an estimate of noise-free HOM, the suggested method makes use of noise power estimation. The suggested method will perform previous DMI algorithms that are based only on cumulants or do not take into account HOM denoising when tested for multiple antenna systems, even for a receiver with impairments. The improvement will be made while maintaining the same level of HOS-based DMI complexity in the same situation. Modulation identification is the step that succeeds energy detection and precedes signal demodulation. When both source signals and channel parameters are unknown, we are in a blind context that naturally requires a blind process of modulation recognition. Despite their high identification accuracy, maximum-likelihood- based techniques for modulation identification often suffer from the substantially high complexity. Feature-based algorithms of modulation identification give an alternative that provides a good performance.