Edité par Basel , Birkhäuser [2001]., 2001
ISBN 10 : 0817664033 ISBN 13 : 9780817664039
Langue: anglais
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
EUR 20,83
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 57 TUR 9780817664039 Sprache: Englisch Gewicht in Gramm: 450.
EUR 58,05
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
EUR 56,10
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
EUR 34,09
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03994 9783764364038 Sprache: Englisch Gewicht in Gramm: 1050.
EUR 73,53
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 132.
Edité par Basel. Birkhäuser Verlag., 2001
ISBN 10 : 3764364033 ISBN 13 : 9783764364038
Langue: anglais
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
EUR 40,08
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierkartoniert. Etat : Sehr gut. Zust: Gutes Exemplar. 123 Seiten, mit Abbildungen, Englisch 264g.
EUR 106,96
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. In shrink wrap. Looks like an interesting title!
EUR 58,84
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide.
EUR 107,52
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Edité par Springer, Basel, Birkhäuser Basel, Birkhäuser Jan 2001, 2001
ISBN 10 : 3764364033 ISBN 13 : 9783764364038
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. 124 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 76,16
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 132 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 78,10
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 132.
Vendeur : moluna, Greven, Allemagne
EUR 52,76
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I Algebraic Theory of Torsions.- 1 Torsion of chain complexes.- 2 Computation of the torsion.- 3 Generalizations and functoriality of the torsion.- 4 Homological computation of the torsion.- II Topological Theory of Torsions.- 5 Basics of algebraic topology.
Edité par Birkhäuser Basel, Springer Basel Jan 2001, 2001
ISBN 10 : 3764364033 ISBN 13 : 9783764364038
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 58,84
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is an extended version of the notes of my lecture course given at ETH in spring 1999. The course was intended as an introduction to combinatorial torsions and their relations to the famous Seiberg-Witten invariants. Torsions were introduced originally in the 3-dimensional setting by K. Rei demeister (1935) who used them to give a homeomorphism classification of 3-dimensional lens spaces. The Reidemeister torsions are defined using simple linear algebra and standard notions of combinatorial topology: triangulations (or, more generally, CW-decompositions), coverings, cellular chain complexes, etc. The Reidemeister torsions were generalized to arbitrary dimensions by W. Franz (1935) and later studied by many authors. In 1962, J. Milnor observed 3 that the classical Alexander polynomial of a link in the 3-sphere 8 can be interpreted as a torsion of the link exterior. Milnor's arguments work for an arbitrary compact 3-manifold M whose boundary is non-void and consists of tori: The Alexander polynomial of M and the Milnor torsion of M essentially coincide. 132 pp. Englisch.