Vendeur : HPB-Red, Dallas, TX, Etats-Unis
EUR 4,44
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
EUR 28,99
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Vendeur : savehere619, San Diego, CA, Etats-Unis
EUR 44,24
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : good.
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
EUR 45,02
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 57,50
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 68,97
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In English.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 67,93
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Edition originale
EUR 73,91
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New. Num Pages: biography. BIC Classification: UM; UMX; UYQ. Category: (P) Professional & Vocational. Dimension: 235 x 155. . . 2017. 1st ed. Paperback. . . . .
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 84,51
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 227 pages. 9.00x6.00x0.75 inches. In Stock.
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 91,51
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New. Num Pages: biography. BIC Classification: UM; UMX; UYQ. Category: (P) Professional & Vocational. Dimension: 235 x 155. . . 2017. 1st ed. Paperback. . . . . Books ship from the US and Ireland.
Edité par Apress, Apress Jul 2017, 2017
ISBN 10 : 1484227336 ISBN 13 : 9781484227336
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 64,19
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Understand deep learning, the nuances of its different models, and where these models can be applied.The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools.What You'll LearnUnderstand the intuition and mathematics that power deep learning modelsUtilize various algorithms using the R programming language and its packagesUse best practices for experimental design and variable selectionPractice the methodology to approach and effectively solve problems as a data scientistEvaluate the effectiveness of algorithmic solutions and enhance their predictive powerAPress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 252 pp. Englisch.
Vendeur : preigu, Osnabrück, Allemagne
EUR 58
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Introduction to Deep Learning Using R | A Step-by-Step Guide to Learning and Implementing Deep Learning Models Using R | Taweh Beysolow Ii | Taschenbuch | xix | Englisch | 2017 | APRESS | EAN 9781484227336 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 117,81
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. New. book.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 64,19
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Understand deep learning, the nuances of its different models, and where these models can be applied.The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools.What You'll LearnUnderstand the intuition and mathematics that power deep learning modelsUtilize various algorithms using the R programming language and its packagesUse best practices for experimental design and variable selectionPractice the methodology to approach and effectively solve problems as a data scientistEvaluate the effectiveness of algorithmic solutions and enhance their predictive power Who This Book Is For Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful. 252 pp. Englisch.
Vendeur : moluna, Greven, Allemagne
EUR 55,78
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The code in this book utilizes R studio and its packages, all of which are open source, to make the learning process as simple as possibleEach chapter builds upon the knowledge of the preceding chapter.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 67,57
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Understand deep learning, the nuances of its different models, and where these models can be applied.The abundance of data and demand for superior products/services have driven the development of advanced computer science techniques, among them image and speech recognition. Introduction to Deep Learning Using R provides a theoretical and practical understanding of the models that perform these tasks by building upon the fundamentals of data science through machine learning and deep learning. This step-by-step guide will help you understand the disciplines so that you can apply the methodology in a variety of contexts. All examples are taught in the R statistical language, allowing students and professionals to implement these techniques using open source tools.What You'll LearnUnderstand the intuition and mathematics that power deep learning modelsUtilize various algorithms using the R programming language and its packagesUse best practices for experimental design and variable selectionPractice the methodology to approach and effectively solve problems as a data scientistEvaluate the effectiveness of algorithmic solutions and enhance their predictive power Who This Book Is For Students, researchers, and data scientists who are familiar with programming using R. This book also is also of use for those who wish to learn how to appropriately deploy these algorithms in applications where they would be most useful.