Edité par Springer (edition 2010), 2010
ISBN 10 : 038740273X ISBN 13 : 9780387402734
Langue: anglais
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
EUR 14,52
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Good. 2010. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience.
Vendeur : Goodwill Southern California, Los Angeles, CA, Etats-Unis
EUR 13,04
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : good.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
EUR 13,10
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Vendeur : ebooks Keystone, Reading, PA, Etats-Unis
EUR 16,59
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : good. This book is in good condition, with minimal signs of wear and tear.
Vendeur : BIBLIOPE by Calvello Books, Oakland, CA, Etats-Unis
EUR 32,94
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : very good. xiii, 307p, diagrams; 24 cm. Probabilities -- Simulation methods. R (Computer program language) Sampling (Statistics) Probabilities -- Simulation methods. R (Computer program language) Sampling (Statistics) Gibbs-sampling R Simulation Stichprobennahme Wahrscheinlichkeit Wahrscheinlichkeitsverteilung. Sparse hilites in yellow to approx 3-4 pages only; else tight clean and very good(++).
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 83,31
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
EUR 81,84
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 93,55
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 96,27
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : BennettBooksLtd, San Diego, NV, Etats-Unis
EUR 92,63
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. In shrink wrap. Looks like an interesting title!
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 86,82
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 86,81
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 86,62
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 97,82
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : preigu, Osnabrück, Allemagne
EUR 85,20
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Introduction to Probability Simulation and Gibbs Sampling with R | Eric A Suess (u. a.) | Taschenbuch | xiii | Englisch | 2010 | Springer New York | EAN 9780387402734 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 102,21
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The first seven chapters use R for probability simulation and computation, including random number generation, numerical and Monte Carlo integration, and finding limiting distributions of Markov Chains with both discrete and continuous states. Applications include coverage probabilities of binomial confidence intervals, estimation of disease prevalence from screening tests, parallel redundancy for improved reliability of systems, and various kinds of genetic modeling. These initial chapters can be used for a non-Bayesian course in the simulation of applied probability models and Markov Chains. Chapters 8 through 10 give a brief introduction to Bayesian estimation and illustrate the use of Gibbs samplers to find posterior distributions and interval estimates, including some examples in which traditional methods do not give satisfactory results. WinBUGS software is introduced with a detailed explanation of its interface and examples of its use for Gibbs sampling for Bayesian estimation.No previous experience using R is required. An appendix introduces R, and complete R code is included for almost all computational examples and problems (along with comments and explanations). Noteworthy features of the book are its intuitive approach, presenting ideas with examples from biostatistics, reliability, and other fields; its large number of figures; and its extraordinarily large number of problems (about a third of the pages), ranging from simple drill to presentation of additional topics. Hints and answers are provided for many of the problems. These features make the book ideal for students of statistics at the senior undergraduate and at the beginning graduate levels.
Edité par Springer-Verlag New York Inc., 2010
ISBN 10 : 038740273X ISBN 13 : 9780387402734
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 103,61
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 486.
Edité par Springer New York Jun 2010, 2010
ISBN 10 : 038740273X ISBN 13 : 9780387402734
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 96,29
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The first seven chapters use R for probability simulation and computation, including random number generation, numerical and Monte Carlo integration, and finding limiting distributions of Markov Chains with both discrete and continuous states. Applications include coverage probabilities of binomial confidence intervals, estimation of disease prevalence from screening tests, parallel redundancy for improved reliability of systems, and various kinds of genetic modeling. These initial chapters can be used for a non-Bayesian course in the simulation of applied probability models and Markov Chains. Chapters 8 through 10 give a brief introduction to Bayesian estimation and illustrate the use of Gibbs samplers to find posterior distributions and interval estimates, including some examples in which traditional methods do not give satisfactory results. WinBUGS software is introduced with a detailed explanation of its interface and examples of its use for Gibbs sampling for Bayesian estimation.No previous experience using R is required. An appendix introduces R, and complete R code is included for almost all computational examples and problems (along with comments and explanations). Noteworthy features of the book are its intuitive approach, presenting ideas with examples from biostatistics, reliability, and other fields; its large number of figures; and its extraordinarily large number of problems (about a third of the pages), ranging from simple drill to presentation of additional topics. Hints and answers are provided for many of the problems. These features make the book ideal for students of statistics at the senior undergraduate and at the beginning graduate levels. 307 pp. Englisch.
Vendeur : moluna, Greven, Allemagne
EUR 84,15
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Probability simulation using R inlcuding the simulations of the Law of Large numbers and the Central Limit TheoremIntroduces the most common methods of Monte Carlo integration using R. Gibbs sampling introduced using R and WinBUGS to obtain interval estima.